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MULTIPLE WAVE SCATTERING AND CALCULATED EFFECTIVE STIFFNESS AND
WAVE PROPERTIES IN UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES

Wenlung Liu

(ABSTRACT)

Analytic methods of elastic waveatering in fibe-reinforced composite aterials are
investigated in this atly to calcuhte the effective static #hess (axial shear modulug) and
wave properties (axially shear wave speed, Batehuatn, W) in composites. For simplicity
only out-of-plane shear waves are modeled propagating in a plane transverse to the fiber axis.
Statistical averaging of a spatiallyndom distribution of fibers is performed and a simultaneous
system of linear equations are obtained from which thect¥ke global wave numbers are
numerically calculated. The wave numbd¢sReK)+iIm(K), are complex numbers where the
real parts are used to compute the effective axial shear stffiesstiand wave speed; the
imaginary parts are used to compute the effective axial shear wave attenuation in composites.

Three major parts of this study are presented. The first part is the discussion of multiple
scattering phenomena in a successive-events scatteppigpagh. The scessive-events
scattering pproach is proven to be mathematicallyaetxby comparing the results obtained by
the many-bodies-single-event approachattring cross-section is computed and comparison of
the first five scatteringorders is made. Furthermore, the ubiquitous quasi-dilgsta
approximation theorem is given a justifiable foundation in the fiber-matrix composite context.
The second part is to calet¢p, B andW for fiber-reinforced composites with interfacial layers
between fibers and matrix. The matepedperties of the layers are assumed to be either linearly
or exponentially distributed between the fibers and matrix. A concise formula is obtained where
parameters can be computed using a computationally egspgram @terminant of a square
matrix. The numerical computations show, among other things, that the smoother (more
divisional layers), or thinner, the interfacial region the less damped are the composite materials.
Additionally composites with exponential order distribution of the interfacial region are more
damped than the linear distribution ones. The third part is to calqul&8eandW¥ for fiber-
reinforced composites with interfacial cracks. The procedures and tairopal techniques are
similar to those in the send part except that the singularity near the crack tip needs the
Chebychev function as a series expansion to be adopted in the computation.

Both the interfacial layers and interfacial crack cases are analyzed in the low frequency
range. The analytic results show that waves in both cases are attenuated-ampersive in



the low frequency range. The composites with interfacial layers are transversely isotropic, while
composites with interfacial cracks are generally transversely anisotropic.
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MULTIPLE WAVE SCATTERING AND CALCULATED EFFECTIVE STIFFNESS AND
WAVE PROPERTIES IN UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES

CHAPTER 1. MOTIVATION AND BACKGROUND

Mechanics of wave propagation are used in many areas of research: seismology,
biomedical applicationsnpon-destructive evaluation (NDE) ofaterials, etc. The classical
theories of wave propagation were developed extensively in the first half of this century. After
WW Il many new electronic devices wereeated that were capable of detecting stress waves in
the field and in the laboratory. These devices revived the study of wave phenomena from an
experimental viewpoint. In seismology, the study of wasadtsring caused by the eartimsn-
uniform internal structure is a selot of interesfor the mining the oil industry. Knowledge of
elastic surface wavpropagation that models seismic wave propagation ateossnic plates is
essential for the assessment of earthquake damage. In biomedicataypysj ultrasonic waves
are used to display images of internal body organs and to performatgreaxaminations.
Severity of osteoporosis, which is caaterized by decreased density and enlapgedsity space
in human bones, can be examined by ultrasonic equipment. In NDE, the use of scanning acoustic
microscopy (SAM) is a peett exampldor the nondestructive evaluation oftarials. Tirough
SAM, either with transmission microscopy or eeflion microsopy, the information of stiffness,
wave speed, attenuation and imperfection in materials can be obtained. Whatever the
applicaton, the understanding of wave mechanics mtamals is essentidbr observing and
reproducing waves and ultimately developing state-of-the-art detecting instruments.

From wave propagation studies in solidsatemials are categorized as: 1. iepic or
anisotropic. 2. Homogeneous or inhomogeneous. Waves in an isotropic, homogeneous medium
are simply disturbances that depend on both time and position and that convey (transport) energy
[1]. The progression of waves is either in shear mode (SH and SV; SH is the out-of-plane
displacement with respect to the planepobpagation, SV is the in-plane shear wave with
respect to the plane g@ropagation), where the wave normal is perpendicular to the polarized
direction of particle movement, or in longitudinal mode (P), where the wangal is parallel to
the polarized direction of particle movement. Waves in an aogotmedium are chacterized
by non-zero flux deviation angles formed by the energy floection and waveormal. Quasi-
longitudinal (QL), quasi-transverse (QT) and pure shear (T) are threecatatpriegor waves
in anisotropic media that exist only in principadterial planes. Subjedisr waves in anisotropic
materials were extensively studied based on khewledge of continuum mechanics and
elasticity. Wave surfaces (velocity, slowness and energy) and thigy tdr interpetation of
wave characteristics in polycry#iiae and composite aterialsbroaden our understanding of the
dynamic properties of theseaterials[2-3]. Specifically, the physical significance of those
analyses is that by measuring the wave speed for varioetidirs across the specimen, the
elastic constants and orientations of crystals can be obtained. Anopwoetaint feature is the
hypothesis that, in general, Rayleigh asd waves can bpropa@ted in all directions with
dissipation except in some directions where there is no dissigdtioMore examples include:
critical angle for reftiction phenomena at a plabeundary between anisotropic media [5] and



wave-surfacedpological £atures describing the transverse-longitudinal mode conversion over a
single surface [6].

Waves traveling in inhomogeneous media, due to the discontinuitytefriad properties
and boundary geometries, are typicaliattered. For plane waves in solids where pament
materials share commoboundaries, rediction, refaction, diffraction and scattering occur.
Reflection and refractioproblems for inhomogeneousaterials usually associate with the
calculation of reflection and transmission coefficients and modearsion and are considered
trivial (unless they occur in an anisotropic medium). Problemsattesing or diraction of
plane waves by a single obstacle or many obstadlggi¢al, spherical inclusions or cylinders)
have received attention by several researchers. Scattering of plane waves by a single obstacle
was investigated and the rhetls of approaches were variously discussed. Method of separation
of variables, for inclusions where the boundaries have strong geometrical symmetries (spherical
inclusions or cylinders), is classical [7-8] for deriving expressionscittered wavéunction and
total scattering energy. For inclusions wherergj geometrical symmetries do not exigli{ec
inclusions or cylinders), an alternative approach (suchashad asymptotic expanst MAE
[9]) can be applied. The so-called T-matrix method in waadtaringproblems is also popular
and can be easily extended to cases of many scatterers. Walk@inaas the first researcher
to introduce a transition matrix formulation for acoustattering by an object with arbitrary
shape. Following his lead, cases of arbitrary number of scatterers and scattering of elastic waves
using the same principle were developed [11-13JecdRtly [14-15] a formulation of multi-
centered, T-supermatrix approach was developed and then applied to a multi-layered acoustic
medium. Finally the integral Equation method wasgmgfd by many ahbrs. Represéative
research by Pao and Varatharajulu [16] derived the Helmholtz- tdady state waves) and
Kirchhoff-type (for transient waves) integral formulae for elastic waves in isotropic and
anisotropic solids. An instructive paper by Twersky [17] also used the integral Equation method
for multiple scattering in three dimensions.

Other interesting aspects of wapmpagation are: extinction crossesion (the sum of
scattering and absgption cross ection) which is a measure @fttenuation in nhomogeneous
media [7,18]; reciprocal relations for amplitudes (or for energy) of transmission aectiosfl
waves for various kinds of interfes, which is widely usddr ultrasonic testing of aterials[19-
20]; causality and the dispersion relations expressing 1.) the speed as a function of frequency for
homogeneous media, and 2.) the real part afattexring amplitude as an integral/olving the
imaginary part (attenuation) for inhomogeneous media [21-23].

Theoretically no material is pure homogeneous medium, since one can always go to the
atomic or subatomic level to argue against the existence of one. Yet in the continuum mechanics
perspective, particularly with respect to wgu@pagation, the bulk mechanical behavior of a
material can be regarded as a criterion by which the medium is categorized as homogeneous or
inhomogeneous. For the concept of homogenizing an inhomogeneous medium, a review paper by
Hashin [24] surveyed the general theory for predicting bulk mechanical properties of
inhomogeneous aterials. Applying the same concept, elastic wanapagation in multi-phase



media can be justifiably homogenized and analyzed as one. For example, for plane waves in
particulate- or fiber-matrix composites, effective average waves travel itinezat paths. In

addition to the principal waves, scattering waves occur as a result of wave interactions between
inclusions and matrix. Those waves in the rectilinear paths are commonly called coherent waves,
and the scattering waves, which make upribie-constructive part, are the incoherent waves. In
wave propagation analyses for compositatenals, the media are usually regarded as
homogeneous but attenuated as long as the wave length is long compared to the characteristic
length of inclusions. It is homogeneous becatige long wave lengths, the waves are less
sensitive to the existence of the inclusions, or less able to ‘detect’ the existence of the inclusions.
It is attenuated because the scattering generated by inhomogenity is measured as attenuation.

The homogenization of heterogeneous media inevitably leads to the ‘calcutatalil on
properties’ which are themselves a sabj in the application of mechanical analyses.
Representative papers by Hasiib] and Hashin [26] presented an overview of the mechanical
behavior of heterogeneous media. Hashin and Rosen [27] ataltulhe elastic aduli of
heterogeneous materials. They also discussed the use of variational theorems of elasticity and
calculated théounds of elastic moduli for fiber-reinforcedatarials. Other papers by Hashin
[28] and Hashin [29] developed the correspondence principle by which the visco-elastic
properties of composites can betekmined on the basis of analytipeessions for elastic moduli
of composites. An alternative method to cadtell the averag@roperties (efctive elastic
moduli for datic strength and wave speed and attenudbordynamic chaacteristics) of a
heterogeneous material is to use wave scattering. A pioneering and exemyulgrpystoldy
[30] investigted the multiple scattering of scalar waves by raleen distribution of isotropic
scatterers and calculated the average vilanetion and average flux carried by the wave. The
randomness and configuration averaging concepts were introduced usaigteca ensemble
technique. Later Waterman and Try&8ll] used the same principle and obtained the forward-
amplitude and extinction theorem of multiple scattering in heterogeneous materials. More
significantly, an explicit expression for the complex propagation index was derived and shown to
include properties for sufficiently low densities of anisotrpicabtles. Aout the same time, two
instructive and comprehensive papers written by [Bax33] dealt with many aggts of multiple
wave scattering. They include, among others, coherence and incoherence, multiple scattering
and many-bodies problems (topics which are closeftedlto this dissertatn). Finally a review
paper on multiple scattering of waves by Twer$B¢] reported the root and contemporary
activities and included a fairly comprehensive literatumeesy. Although [31-34] mostly applied
to electromagnetics and optics, the philosophiestaciniques they employed were evoked by
many mechanics (acoustics and elasticity) researchers afterward and are currently used by this
dissertation.

One of the catalyst$or the renewed interest in wave propagation, indeed for the
engineering mechanics discipline as a whole, is the use of composite materials imdoatnal
products. There are two kinds, among others, of composites: patticnatrix and fiber-matrix
composites [25]. Particale-matrix composites are those where either spherical- or spheroid-
shape inclusions occupy an otherwise matratarial. An example is concrete as a construction



material, where the gravel or pebbles (as inclusions) anersunded by the cement matrix. Thus

a concrete composite consists of pebbles, cement and water. The water in this case acts as an
adhesive agent between the pebbles and cement. The fiber-matrix composites are those with
cylindrical fibers embedded in the matrix. While the paréiteiicomposites are globally ismpic

and their order of strength depends on the volumetibns of the inclusions, the fiber-matrix
composites are highly anisotropic; their design and naatufing are relevant to mechanics
analysis. The stiffness of a fiber-matrix composite (with continuous fibers) in the fibetiatr

is that of the order of fibers and it is the order of matrix in the transversetiai. Thus the
laminated structure, where laminate composite slabs with unidirectional fibers are fabricated
layer by layer in different orientations, is anpirmvement and compeaigsfor the weakness in

the transverse direction.

For the material characterization of composites, elastic wawpagation methods are
indispensably effective. It is well established that multiple wave scatteringythrecomposite
materials, when treated in a macroscofac effective global) viewpoint, leads to calculated
effective globaproperties (&tic strength, wave speed and attermmtof the composites. Many
research papers were published in this concept based on the multiple scattering literature
mentioned previously [30-34]. Bose and Mal [35], as thectlireferencdor this dissetation,
studied the axial shear waves in one paper and the longitudinal and transverse shear waves in
another for fiber-reinforced composites. In those papers, the so-called quadir@ysta
approximation was used and a correlation function was introduced to obtain the average
propagation relationship. A recursive multipaeringformula in terms of the disptement
wave function was then obtained by which a homogeneous linear system of equations was
derived and the average wave number--hence tdgc sstifness and dynamic propagation
properties--could be calated. Their procedures and principles are closely followed in our
study. A gmilar methodology using various approaches was adopted in different cases by others
[36-37]. Other methodologies worth mentioning include: the variational method [38]; the
forward amplitude theorem outlined in [31], also used in [39], and in [40] where it was combined
with the self consist model (GSCM) first introduced by Christensen [41] for the calculation of
static elastic constants. The common feature of all thogmaches is that they all lead to the
same statidounds, thus confirming their appliditly for waves in composites. Other than
calculating effective wduli and wave properties, wave theories in fiber-reinforced composites
take on many important aspects. Using various analysis techrfiopuesimerous problem
definitions, dynamic equation of motion and dispersion relations were studied from which certain
mechanical properties could be drawn [42-51].

Wave methods applied in composites have been studied extensively. In spite of that, we
shall, in the fiber-reinforced composites context, revisit some theories and lay out some new
procedures. In this study, only fiber-matrix composites with identical, usciebnally aligned
and spatially random-distributed fibers are discussed. Th#fgevihree parts. The first part is
the multiple elastic wave scattering aspect inrfiteenforced composites. Multiple elastic wave
scattering phenomena in fibeeinforced composites are reexamined in order to lay out, as a
prerequisite condition for aterial system homogenizati, the quasi-crysliame approximation



from which a satistical technique can be suitably applied. Tipigraximation was then used in

the ensemble average procedure for the gradientactednd interfacial cracks studies. Twersky
[52-56] extensively studied multipleattering of radiation by parallel cylindei acoustics and
eletromagnetics. His studies on multiple wave scattering and a ‘self consistenppieddch’ are
valuable references for this dissgion. The method therein of obtaining a formal solution of the
scatteringunction] in the context of successive scattemmgders expressed recursively in terms

of previous ordefs is modified in our study. This sgessive wave scattering concept was later
used to justify the use of the quasi-crystallippraximation. In the sicessive-events approach,

the boundary conditions (continuity of dispement and stress across the interface between fiber
and matrix) are to be satisfied feach scattering event. The scattering wlawetions are then
summed foreach fiber andor each consecutive scattering event to obtain the \iavetion in

the composite field. An alternative method to caltulthe scattering wavieinction in the
composite field is the many-bodies approach for which the boundary conditions are to be
satisfied simultaneously for all fiber-matrix intaces. The result of thipproach is a recursive
formulation which can be expanded to obtain the same analytic expression as iccdssiga-
events approach. The many-bodies formulation is the basis for constructing the ensemble
average procedure which is used for calculation of globacefe materialproperties for
composites with interfacial layers and with interfacial cracks in the second and third part of this
dissertation.

For the many-bodies approach, the procedure starts with the Helmholtz equation for
harmonic waves in a steady statendition, followed by the appmlation of the eigafunction
expansion of wave fields (displacementsaar case). Then bye#ing up theboundary
conditions for the multiple wavecatteringproblem, sattering coefficients can be obtained in a
recursive fashion. Based on this recursive formula, configuration averaging of random
distribution of fibers is performed. Finally the ettive global wave number in the composites, at
low frequencies range, can be extradted a linear system of equations. For a fiber-reinforced
composite, the average wave number is a complex number for which the average wave speed and
attenuation can be deducedhrdughout this study, mainly the axially shear wave phase speed
and attenuation are to be calculated. The axially sheduls of the composites is just a by-
product of the wave methods as the wave frequency goes to the static limit.

The second part is the study of waves in fiber-reinforced composites with gradient
interfaces. For fiber-matrix composites, the interface between the fiber and matrix may play an
important role in determining the overalloperties of the system. An important study for the
effect of interfacial zone on mechanical behavior ofrfilgenforced composites was given by
Achenbach and zZhu [57]. For a&asic model, a spring-like discontious dismcement
mechanism for the interfacial area, combined with the numerical boundary integral method, was
used by the authors to investig thepronounced changes in stress distribution caused by
variation of the interphase paratars. Later Xu and Datf&8] used a hybrid method combining
the finite-element and eigenfunction expansions to study theaeaistics of the fiber-matrix
interface by guided waves. They showed the reduction of interfaciad stiffness had a
significant effect on the leaky waves. On the use of the NDlBoddb chaacterize interfacial



properties, Chu and Rokhlin [59], using the well established Christoffel equation and
experimental data, devised afgefference bulk wave model to claaterize effective elastic
properties of the interphase and the composites. In another paper [60], the same authors
reported a method for the inversetermination of effective elasticaduli of the fiber-matrix
interphase from experimentally measured composite moduli. The multiple-phase generalized
self-consistent (MGSC) model is the theoretical basis for obtaining the analytic expression for the
transverse shear modulus of a composite with multi-layered fibers. Huang et al [61] studied the
fiber-matrix interphases ef€ts on the scattering of elastic waves. This can be foseithe
relationship of attenuation of composites and the elastiperties of the interphases. In this
study, we vll employ (ingead of the spring model ¢57]) the continuous disatement and

stress model for the interphase area between fiber and matrix. Furtteexd insusing the total
transfer matrix method of [60], weillxderive an analytic ¥pression for the axially transverse
shear modulus for our composites with multi-layered fibers using an alternative matrix method.
The interfacial materigiroperties depend on how the fiber and matrix were bonded. Usually the
interphase is a chemical coating layer as a bonding agent. Yet for the sake of demonstrating the
multiphase feature of our analyses, wll assume gradient chacteristicsfor the interfacial

region. That is, we illassume that the aterialproperties of the inteatce is between fiber and

matrix and that the elastic properties are continuously distributiess guaranteeing the
continuity of stress and displacemehtaugh the interfacial regions. Two kinds of gradient
functions are possible: linearly and exponentially gradient. Huot that the mechanical
properties of the interphase might be visco-elastic can be assayed by using the correspondence
principle, by which elastic properties of int@gck sould be remced by visco-elastic ones to
obtain the overall effective quantities.

The third part of the dissertation is the wave hodt applkcation on fibe-reinforced
composites with interfacial cracks. The interfacial cracks may occur in components at the
manufacturing stage or after use over time. The micreetgfin a fiber-matrix composite may
be cracks in one or more of the three regions: matrix, fibers and matrix-fibeadgerin our
case only debonds between fibers and matrix are to be analyzed, and only the circumferential
cracks are considered. Furthermore, to make analysis simple, the cracks are infinitely extended
along the fiber axis direction and each fiber has the same crack parameters (crack length and
orientation).

Basic interfacial circular crack problems itatic state have been studied by many
researchers. Tamate and Yamd4@3] applied the cylindrical axially transverse loads at an
infinite distance away form the circular inclusion. Toya [63] studied the same problem except
that the loads are applied under biaxial loads which are longitudinally transverse to the
inclusions. The basic properties such as the stress in the vicinity of the crack and the stress
intensity factors offer valuable basic information for wave propagation problems in cracked
media. Research of elastic wave propagationacterg with cracks in solids starts with simple
cases as a line crack in a media. Freund [64] studied elastic waves due to noatialaaging
of equal but opposite conceatednormal forces on the craclkdes in arunbounded elastic
solid. The time dependent stress intensity factor was discussed in detail and generalized for



spatially-distributed and time-varying normal iagy loads. Ange|65] demonstated that the
harmonic wave propagation by cracks can be reduced to systems of singular equations of the
Cauchy type by either the Fourier integral transfeeohnique or by the Green function method.
These two methods provide us with insightful information on how a crack problem can be
modeled and mathematically solved. Later [i®6] used the Fourier integral transform method

on a wave problem where three-dimensional waves in a cracked elastic solid are considered. The
application then extended to layered composites where cracks exist between two different
materials. Love waves and bulk waves scattered by a -fteessrack with finite width of
layered composite were studied by Neerhoff [67]. Again the integral equation method was
employed and an infinite system of linear equations obtained. An important feature of [67]
regarding the satisfaction of the edgmdition for expansion functions (Chebyshev functions) is
adopted in our study. In avslar problem, Bostrom [68] also used the integral equation method
and Chebyshev polynomials to construct the matrix equations. For waves scattered by a circular
or penny-shaped crack, Krenk and Schmidt [69], using thectdintegral equation niedd,
developed a solution-method based on expansion of stresses aadedpits on the crack
surfaces in terms of tignometric functions and orthogonal polynomials. This method was not
restricted by any assumptions of symmet Tsai [70], using the Hankel transform method,
studied longitudinal harmonic waves scattered by anpashaped crack in a transversely
isotropic naterial. The results showed that ttgnamic stress intensityaétor has different
maximum values at different wave frequencies. As direct referefocethe method we
employed in this study, Norris and Yang [71] and Yang and Norris [72] studied elastic waves
scattered by a partigbonded fiber embedded in the matrix. In [71] the unknown stresses are
represented by a series expansion of Chebyshev functions whose coefficients were to be
determined byboundary conditions, while in [72] they use unknown dispments (COD) to
perform a snilar derivaton. We will closely follow theformulation in [72] for the construction

of boundary conditions. For NDE apgations on a cracked medium, an inversehagblogy

was presented by Achenbach et al [73] to abtarize a planar crack of general shape contained

in an elastic solid. They showed that, for a giveattered field, the inversproblem can be
formulated as anonlinear optimizatiorproblem. Particularly, at low frequencies its solution
gives the location of cracks, the orientation of the lcqglane, and the crack-opening volumes.
About the same time Sotiropoulos and Achenbach [74] studied the ultrasonic waggarethnd
transmission by planar crack distribution. Reflon and transmission coefficients were derived

for incident longitudinal and transverse time-harmonic plane waves. For low frequencies, a
closed form expression was given in terms of geometric peas) the material constants, and

the incident wave field. Deterministic and statistical distributions of planer cracks were also
considered. The application in recent years extended touthe at fiber-reinforced composites

with cracks or defects.Coussy [75] studied thecattering of elastic SH wavesom a fiber
imperfectly bonded to a matrix. By means of the perturbation method asstcwith a
homogenization procedure, the analysis was extended to fiber-reinforced composites with
interfacial cracks. The results he obtained, that the composites behave like anisotropic visco-
elastic materials, are expectedanr study. Aboudi [76] presented a continuum theory for
elastic wave propagation in three-dimensional composienmals with imperfectbonding
between the phases. It provided the dispersion relations for harmonic waves and the dynamic



response of the composite to impulsive loading. deericontact, perfectubrication and
complete dbonding of the constituents were discussed. Mal et al [77] developed ultrasonic
nondestructive methods using guided waves in undamaged as well as damaged fiber-reinforced
composite laminates. A systematic inversion scheme of dispersion data was applied to determine
the reduction in stiffness due to transverse cracks in the off-axis plies of damaged, multi-
orientation laminates. Recently Angel and Kdi8], by invoking Kramers-Kronig relations,
determined analytically the speed and attenuation of antiplane waves in an elastic solid
containing a dilute distribution of parallel or randomly oriented cracks. The linearity, passivity,
and causality based Kramers-Kronig relations constitute a resourcefully analytic avenue for
investigating dynamic properties of composites.

The main objectives of thiswsly are to calcalte the effective static strengfbut of
plane shear moduli) and dynamic wave properties (shear wave speatteanhion) of fiber-
reinforced composites with interphase (between fibers and matrix) and interfacial cracks and
where the fibers are randomly and spatially distributed in the matrix. Before those can be done,
we will highlight a frequently used theorefjguasi-crystine approximation) in multiple
scattering in composites by showing its validity using the successive-events scafiproarh.
Then by the many-bodies approach, combined witissical procedures, the average wave
properties for composites with the two cases just mentionkdbevinvestigated. Parametric
computations Vit be peformed to study the general trend as functions of interphase and crack
variables.



CHAPTER 2. MULTIPLE WAVE SCATTERING IN FIBER-REINFORCED
COMPOSITES: MICROMECHANICAL VIEWPOINT

2.1 Introduction

While the multiple wave scatteriqgoblems in composites in gasistical-average sense
have been investigateddroughly [35,37], the micromechanical paxsfive of the samproblem
has receivedimited attenton. In references [35,37], the focus was on the cledlelastic
constants using the multiple wave scatteringpraach. In  quantum-mechanics or
electromagnetics, the calculation of the index of refractiompr@@agation constant) can be
achieved by using a spatial statistical-averaging technique. Only in studies of the more general
aspects of wave scattering phenomena is theomimechanism of multiplecattering investigated
[52-56]. As the studies in [52-56] were concatgd on the micromechanical aspects, we
attempt, in the same spirit, to calculate the transiiéyabf energyfrom one sattering event to
the next in a fiber-reinforced compositeat@rial system and to validate one of the theorems
(quasi-crysthine approximation) on which the spatialasistical-averaging technique is based.
For simplicity, only shear waves are considered to demonstrate themechanical physics of
the multiple scattering phenomena.

We define “wave scattering” as the redistribution of radiatiom the wave source in
the presence of an obstacle or obstacles (the term ‘scatterer’ is al3oWs&e sattering in
solids is the collection of reflectn, refaction and dfraction ocairring in a non-homogeneous
medium. The term ‘multiple wave scattering’ is used when, in a medium, two or more obstacles
are present. For a single-boayateringproblem, radiation from the otacle, combined with the
wave source, is the effective field in the medium. Fony¥aodies problems, multipleattering
events occur consecutively between those obstacles. The effectivdofiedd many-body
problem is the combination of all those events and the wave source. Wheneattedng
event occurs, the energy radiation from a particutatterer is incidentipon other satterers,
which in turn serve the source for the necdtsering event. Thus “primary scattering” is defined
as the scatterinigom the obtacles on which the incident wave impinges. ‘@etary sattering”
is the scatterinrom the obtaclesupon which the primary wave impinges. The “tertiary” and
the fourth-order of multiple scattering are defined accordingly.

The mechanics of wave scattering is governed by the wave @guatThere are
coordimate systems$or which the wave equations are separable [79]. In situations where the
scatterer'sboundary sudce coincides with this class obardinate systems, an eigginction
expansion can be used where a series solution of special functions is employed to express the
wave field. Specifically, trigonometric functions are used for dugilmear Cartesiaoordinate
system, Bessel functions for the cylindrical cooatkn system, and the spherical Bessel and
Legendre functions for spherical cooratie systems. For scatterers whosdgages coincide
with coordirate systemsor which the wave equation cannot be safed, the computational
integral equation method [10] or perturbation method is often used [80]. Sinaeatteress in a



fiber-reinforced composite system are uradiionally parallel fibers spatially distributed in the
composite, we will employ the cwlilrical coordiate system in which the Bessel and Hankel
functions are used.

For wave scattering, the effective fidlok a single-sattererproblem is the combination
of both the incident wave source and the scattered maulialior a manyeatterergproblem, one
seeks to combine the effects of all the scattering events and the incidentovas® sTwo
approaches can be used to catailthe effective wave field. First, the domain can be treated
from a many-bodies-single-event perspive (Figurel). From this, inteactions of waves in a
system of inclusions are seen as a single event. The boundary conditions for this system must be
satisfied simultaneously for all the inclusions wheratempt is made to obtain solutions of the
wave equation. Using this method, the solutions are functions of themselves and are implicit
solutions. Secondly, the wave irdetions between the obstacles can heught of as
consecutive events of waves reflecting between the scatterers and refracting incessantly (Figure.
2). For primary sattering, théboundary value problem consists of a singletterer and a wave
source (incident waves) from the far field. For the secondary and higher ordsttefring, it
consists of a single scatterer and a wamerce emittedrom one of the othercatterers. The
boundary conditions needed to be satisfied are the boundary of that specific cattglees and
that particular event. Thus, one needs to keep track of the wave fieléadbiorder of
scattering andor each scatterer. With this nheid, the total wave field induced by all wave
interactions of scattering is amnted for and summed. The results thus obtained are explicit
solutions, since the solutions are explicitly expressed as functions otdtterers’ location,
material properties of both thecatterers and matrix, and tliynamic input of the incident
waves. Theoretically, the two approaches described above should lead to the same results in the
linear range [55-56]. It is our intention, after proving that these two approaches lead to the same
results for a fiber-reinforced composite system, to study the energy traiisjeoalbhe multiple
scattering phenomena between fibers in the composite system.

In addition, the quasi-crydliae approximation for the wave theory in fiber-reinforced
composites can be validated using the consecutive-evemtsaeh. Twersky’s discussions [55]
on planar random distributions of parallel cylinders encouraged a closer look at this
approximation. In [55], the parallel cylinders aredted on the y-axis only. Four case, the
fibers are distributed in a 2-D (x-y) plane. As in [55], wél wse the averagecattering
coefficients fo, A1,A1...) as the parameters for discussions.
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Figure 1. Schematic representation of the many-body-single-event approach.
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Figure 2. Schematic representation of the consecutive-events approach.



2.2 General consecutive-events approach for multiple wave scattering

In this study we use the consecutive-events approach (Figure 2.) of muiifilering to
investigate shear wave scattering phenomena in a fiber-matrix composite system. The composite
system consists of randomly-distributed isotropic parallel fibers embedded in an isotropic

homogeneous matrix. Following Waterman and Trisdl], let L,UiE(rilRl, Rowiiiiianns R1) be
the shear displacement exciting field acting on the fibeFhen
WE(NIRL Ry R)
g+ z (5 )d + 5 T q)kz T g)d + Z (1) z T ) gk T ) &+ (2.1)
J# %]
where e'kx represents the far field incident wave (the incident wave ampliz@enormalized

for simplicity) andTl( ) represents the linear operator that operates on scatterer j with respect
to the scattering field in the matrix. The supersciptindicates that it is referring to the
scattering field in the matrix. The exciting fielpliE(rJRl, Roooviiiiins R1), a scalar of shear

displacement in only oneoordimate dimension (z-coponent for our case), is apparently a
function of the geometrical distribution of all the fibers and the position vector relative toifiber *
(Figure 3). Note that theeetorR; represents the global position of fib€randr; represents the
field point (o) position relative to fiben®. Therefore the total field in the matrix is

fr)=e"+ Z T (W (HIRL Ry R)
|kx+z-|-1( )é’klx+.§ Tl( {)i Tl( i,)é’klx_|_§ -Il( ir)i -Il( [)% T1( l() &(1x

ETOETE g 22)
and the total field in the fiber’ ‘|s
W) =T )Y (IR, Raeeeeeeene R)

=T2(0)e + T(5)5 Ty b+ T ¢ )J; (s )z k)&

i#

T2 (0)3 T )éJT (n )ékT 1)k +.... (2.3)

e

where Tz(ri) represents the linear operator that operates on fibewith respect to the
scattering field in the fiber. The superscrigtindicates that it is referring to the scattering field

in the fiber. In Equations (2.2) and (2.:'§§,T1(ri)e”‘1X and T?(r)e"* are the primary scattering
i=1

waves in the matrix and fiberi’,) respectively. The sendary sattering waves are

S TX(r)y T )% (matrix) andT?(x) s TY(r; ' (fibers). Tertiary and higher orders aastering

i=1 J# J#
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can be recognized in the same fashion. All of the terms in Equations (2.2) and (2.3) can be
obtained by solving boundary value problems for the consecutive events as developed in the next
section.
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Figure 3.Representative fibers andj', the incident waves, and the coordinate system.
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2.3 Boundary value problems of multiple SH wave scattering in the fiber-matrix composite

We follow the consecutive events approach laid out in the prevemi®s to solve the
boundary value problems and obtain, &&ch event, the displacement field in the composite.
Also, we assume that the displacement of a planar, harmonic, axially shear incident hiave
generated at infinity and ropagating in the x-axis @iction (Figure3). The composite consists
of identical parallel fibers (with radiugt” for each fiber extending infinitely in the z-direction)
embedded in a matrix. As stated in the last sectve label the fields assated with the matrix
with ‘1’, and those assaatied with the fibers witf2’. The frequencyw of the incident wave is
such that k=w/c: (also k=w/c2), where k is the wave number, c is the wave speed. Note that
ci=VH/p1 and e=Vpo/p2, where 1 and p are the shear modulus andaterial density,
respectively. The amplitude of the incident wave is assumed te. b&he time factoe " can
be omittedfor all quantities involved in the wave equation for theady state andition. The

displacemenui”can be expanded as the summation of cylindrical functions as
— lbngcosmiH codl) _ " iélR»costDi % m X KID ig\Gi ' (24)

In the equation above, the incident wave is satisfied as a solution of the wave equation
O%u+k?u=0. Also note that (R®) are the global polar coordites of fiber i’ and (i, 8) are
the local polar coordinates as referred to filber *

uln - erlklx

The primary event consists of the incident wave (Equation (2.4)) ajeemn the far
field, the reflecting (scattering) wave in the malmj]x and the refracting (transmitting) wave in
the fiberu’ (Figure 4). Then

G =T(1)E = S Auta(knd™ . (2.5)
W2 =T2(5)dY = 3 By (k1 & (2.6)

In the equations abovd,, is the Bessel function of the first kind aht}, is the Hankel function

of the first kind. Ami andBmi are the scattering coefficients. Boﬁhand u? are solutions of the
wave equation.

The displacement and stress boundary conditions for the primary scattering event are
in 0 ([ in d.l'z
(u + ul) = u2|n a and HI;(U + ul) =, —— , (2.7)
I

Iri=a d'i Iri=a
respectively.
Substitute Equations (2.4), (2.5) and (2.6) into the boundary conditions given above, then
multiply both sides bg ™ and integrate from 0 ta@over8;, Equation (2.7) then becomes
U N Mg (kg + AiHi( k9= By W kR and

Ay dsReo 3 g+ Ay (9] = B (K R (28)
Mok

|ri =a
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Figure 4. Schematic representation of the primary scattering event associated with fiber *
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From Equation (2.8), we solve the scattering coefficgptand By, :

A = iy diR oS im%, By = 20 9RO mlnkl%Dm' (2.9)
Where
En=23(k3d h( ka— I kp ) Kka
D, = 3u(kAHi(kd - 28 k3 H( Kp 2.10)
_ koK,
z=1r22
HiKy

Note thattmandDm are even functions with respect to ‘m’, i.e4=E-m andDm=D-m. And that
A—mi:('l)mAmi ) Bmi:('l)mBmi-

The foregoing watment isfor the primary eattering event. Next we calculate, as a
representativéormula, the secondarycattering waves in the composite by considering waves
reflectedfrom fiber ¢; and incident upon fibe¢; (Figure 5). Let ujl be the displacement wave

reflected fromc; and incident upow;, that is,

up=T(r ) = Z A, Ha(k ) &7 (2.11)

m=—o0

Let uijl be the secondary wave reflected from fiber i, then

u =Ty =T(n)TYy)ev = Z Ay Ho(kp &, (2.12)

m=—co

and Ietuij2 be the secondary refracting wave in fiber i,

<=
=

=Ty =T T(r)ev = z B, h(kn& . (2.13)
The boundary conditions for the secondary scattering event are

2 af
(uJl + ujl)ln = ujzlri=a and uly(ujl + ujl)lr =t j

i = & Ir =a

Applying the boundary conditions in the same fashion as in the primary scattering case, we have
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m:iw[ Him((ka ¥ ])eme] + Anij Hn( K ¥) éme] :m:i_w[ Bi (ki igwi] ] and

|ri =a

o d img, ime, 2 17 im
m:zmuqi[Amem(klr;)e %+ Ao Hn( k) € e]mza =3 Koy [B Im(kom) ™ ] (2.14)
Note that the variableg andé; in the above equation are referring to the local polar coordinate

system of fiber j. They need to be translated to therdinate system of fiberi* using the
addition theorem of Hankel functions, which is

& Ho(ki) = €™ ()™ 3 (=1)" ( kf) Hyom( ki) €970 (2.15)

p=—00

Indices i and j need to be interchanged in (2.15) so that the relevant terms in (2.14) apply. Thus

(kAT AunsH(KD)E" + A H(Ka= B I Kp

mM=—-c0

- , (2.16)
1A S A H(kp) €7 + A H(kd= 2B I K

Therefore, solving\mij andBmijj from the above equations, the secondasttering coefficients
are

i' Z Ab+m1 p( )

m p=-c

_ 1 2 lpeij
ij D rklaZAH—m'J p '

pP=—c0

(2.17)

Substitute the above equations into (2. 12) and (2.13) for the secom:mtgrieg fields
§ =TT =0 8™ 5 5 17 oo o il e ™

M=-0c0 P=—00 p+m

(2.18)

ikKRcosPj o o

— '1X_2u0e cpemet L E+m i(p@y +ma, )
W =TT =y 2 2 T b ek n(ler)e T

Using the same procedure as in the foregoiegttnent, we can obtain the tertiary scattering
fields both in the matrix and in the fibér as
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Figure 5. Schematic representation of theoedary sattering event associated with fibers
and §j’. The far field wave first incident upon fibelr,'the reflecting wave in the matrix interact
with fiber ‘i’ to induce the secondary event.
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Uje :Tl(ri)Tl(Ij)Tl(lz)eiklx = i i Z diRccosv prarm Em E, Ep+rn Ep+q+m

M=—00 p=—co0 (=—00 D Dp+m Dp+q+m

el )2

) ikiRccosdy o0 o0
@ =TT ()T () =208 é 1 1 Sen Evam

Z z Z jPrarml_—
Hq('ﬁrjk)Hp(klrij)‘]m(kzﬁ)ei(qejk+peij+mi).

M=—co p=—0co (j=—co Dm Dp+m Dp+q+m
The subscript ‘ijk’ in the tertiary scattering represents three succeeding events Stamtinige
primary wave emitting from fiber k, then the secondary wave from fiber j, and finally the tertiary
wave from fiber t'. Scattering pathgor higher order attering fields can be inereted in the
same fashion.

(2.19)

As the scattering shear displacement fiédtiseach scattering event are readily obtained,
we are ready to apply the general approachaedin Equation§2.2) and (2.3).Assuming the
number of fibers in the matrix to be n, the total primary scattering fields in the matrix and in the
fiber ‘i’ are

n

=Y TS =S = g e e

noow and
- Z Z U elklR cosd; Im5Hm(kll'i)eim6'
1=1 m=—o Dm
) ik; R cos®; o Ml _
U =T*(r)e" = 25 > 3 (kr)E™. (2.20)

nka &, D,

respectively. Note that in the first equation(®f20), the terms oéach primary scattered wave
(associated with each fiber) are summed. Theeethe coordiate variablesi and 6 for those
individual terms are referring to the cooratie systems associated with each fiber. In the second
equation, the primarycattering wave in the fiber i is simply the refracting wéwethe primary
scattering event. The total secondary scattering fields both in the matrix and i fiper *

ltotal ; ]ZI Tl(rl)Tl('])éklx - ; ]ZI qjl
d
Z » i dveo jprm En Zom Hy (Kt JHo (ki e P ™) 3
=1 1A m——oo p=-00 Dm Dp+m ’ |
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hd jk,R cos®, : p+gtr+m+l
Zzuoé I D Ep”” Spraem Epraerem _ (2.22)

m ptm “ptgtm “ptgtrim

H, (ki )Hq(klrjk)H o (Ko )‘Jm(k2ri)e (8 a8y +py +mé)
Observing Equations (2.20), (2.21) and (2.22), a regaléiem of the scattering fielder each

scatteringorder can be found. Thus, by induction, the dispinent field of eaclrder of
scattering can be deduced.
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The total shear displacement fields in the matrix and in each particular fiber i are simply
the summation of the corresponding quantitiesefach scattering event. Théree the shear
scattering waves in the matriw)(and in fiber i &) are

W elklx l-‘twtal + Litotal lémm @wtal_'_
W l-’{ptotal szlmal lfatutal li}zmm

To show that the shear dlsplacements fields obtdmoea the consecutive-events approach lead

to the same results as those obtained from the single-event-many-bodies approach, we resort to
expanding the latter into a series summation and matching each summation term with those
obtained from the consecutive-events approach. A sheaaakspént scattering wave in fiber-
reinforced composite was obtained by Bose and Mal [35] using the many-body-single-event
approach. From [35], we have

émz S AwH(KDE"  and

(2.23)

w = Z By (kD E™, (2.24)
where

Aimi) = UODBm I:mi

B(mi) = ;lilo;‘é I:mi (225)

n = E
F — ImelklR cosd; + ﬂ r |p6”.

;p; Y H (ki Je
In the third equation of (2.25miis a function of itself. By substitutirfgp+m, with the function
itself, a much larger equation with extended subscripts results. Performing the same substitution
for the newF terms incessantly, a series summation can be obtained which renders the results of
Equation (2.24) eactly the same as those in Equat{@®3). Thus we prove that the results of
the many-body-single-event approach are the same as those obtained from the consecutive-
events approach.

2.4 Energy considerations

As stated at the beginning of this chapter @anoven mathematically @t in the last
secton, the waveattering in the composite can be seen as a series of multiple scattering events.
Physically it must be a converging series of events, i.e. the redistributed energy afctedsg
orders must beighinishing consecutively. One of the parters to measure (mathematically at
least) the diminishingcaittering effect is the extinction cross-section each scatteringrder.

By definition [18-19,81-82], the extinction crossesion 0% is the addition of the scattering
cross-sectiow* and the absorption cross-sectig,
0% =0%+0® (2.26)

23



Simply put: the scattering cross-section can be associated with scattering in the matrix phase and
the absorption cross-section is associated with the fiber pbécsamdoab are defined as
Esc b Eab
SC — ap _

oF == and o= (2.27)
respectively, where is the average power flux over a period and

=_17 it . —iat

E —?jo _[SRe{Tije ] R{ iy e ]ry dsdt (2.28)

In (2.28) above, T is the period, Re is deatgul as the real part of a complex numivers the
stress tensor,i s the displacement tensor andisithe unit normal pointing outwardly to the
boundary surface ‘s’.E can be rewritten as

—_ 1_T
= —E R%ijlsrij U Dnj d% (2.29)
whereuy is the complex conjugate of u

For an incident shear wave,d (o is the amplitude), the average power flux per unit
area is

gn=-1 Re[ia)J. szufnxdsl
2 s
_ -% Re[i wfuui klnxds] (2.30)

1
= E L'éﬂlklw-
In the equation above, the integration aud is assigned to be the unit area with thenorinal

in the same direction as the positive x-axis. Tloeeethe energy flux per unit area for the
incident wave, or intensity of the power flux, is

= =%u§pwzc_; , (2.31)

where g is the shear wave phase velocity in the matrix. The power flux, as an impedaunef
is proportional to the square of the frequency.

Next consider the scattered power of the primary scattering wave of the fiber i, which can
be written as

=sc 1 .
ES = - Re{mfsrrzuzmnrde], (2.32)

where the boundary ‘s’ is the sack of fiber i anch, ds= r &, . Substitute the relevant terms (2.5)

into (2.32), then

_ 0 d a
EX= _nReEiwulkl S Asi Asi Ho(ket) Hp {Kat) {E : (2.33)

pEo
For a lossless medium, the scattering power can be asymptotically calculated by the far field
energy flux, i.e., as R, E can be evaluated asymptotically (Figéde Therefore, substituting

the asymptotic value (appendix A) of the Hankel function as the vamiabieEquation (2.33)

goes to infinity, (2.33) becomes
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p=—c0

=2uw Yy AA, (2.34)
p=—0c0
© EE
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The average power absorbed by the fiber over a period can batedailn the same manner. It
can be easily shown that the quanf&ﬂ’/b becomes zero for our case. It is physically consistent
with the fact thatfor an elastic medium, thate at which energy flows into a closadface is
exactly the same as the rate at which it flows out of the claséats. If the medium in which
the waves travel is a non-elastiat@rial (viscous or plastic), the power aftized by the satterer
cannot be zero. Thus the primary scattering cross section is

— O
sc:ElsC/. :i 2 - EPEP
o1 En T2, DD, (2:35)
and the primary absorption cross section is zero. Therefore
= EpE,

— Cy ab_ sc_ & 4 2 ) 2
o7 =0°+0’=0; op_z_w—D D, (2.36)
Similarly
o.gx - O-;C
- Ez/_

Eln (2.37)
_4 = O
k z Ab'l AJU -

Note that in (2.37), the extinction crogzsonfor the secondary order ofa&ttering is defined as
the average power scattering per unit power of the incident wave. Normally the extinction cross
sectionfor a higher order ofcattering is defined as the average power scattering of the present

order per unit power of the previous order, as it shouldrPe Ezésc in (2.37). Yet to

conveniently measure theminishing power eféct, we resort to the incident wave as the
common input for all orders otattering. The samegyproach can be used to compute the energy
scatteringor tertiary and higher orders: (see appendix B for the list of the coefficigntdak

the first five orders of scattering.)
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Figure 6. Far field schematic presentation of the primary scattering cross-section.
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Note that foreachorder, the quantities inside the summation for the extinction cross-
section are the square of absolute values of teesponding sattering coefficientsApij...).
Observing the scattering coefficients in the appendix (AppeBidithe sattering cross-section is
proportional to the square of the incident amplitwde Further, there are three geometrical
parameters which affect the scattering cross-section: the fiber edibsr separations; and
the relative angular locatior§ of the relevant fibers. The only definite statements that we are
able to make about the geometrical paetars are: the larger the fiber separations, the less the
scattering cross-section will be.

Analytically, it will be promising only to investigate the Rayleitymit (low frequencies
limit, or long wave length limit) of Equatior{2.36), (2.37) and (2.38). For simplicity, we intend
to study two extreme cases of the separations of fibers, i.e. when the separations are both large

and small. Specifically, if the separations are large for the fibersb;h}e?Pi >> a, wherebmin

is the minimum of the fiber separations. If the separations are small, then we assume, in addition
L1 . :
to the cond|t|onE >>a, the most extreme case for whigh2a for the adjcent neigborhood of

fibers It is apparent that in both cases, the primary scattering cross-section would yield the same
results, since it is independent of the fiber separations. It is also apparent that the case of large
fiber-separations is less involved than the case of small-separations.

Consideringka<<1 for Equation (2.35) of primarcattering, the minimum power (hence
the dominant term) of the series can be shown to @a)( Only three terms survive in the

. E.E .
summations of—"—". Those three terms are when p=0 antllp=For large separations such that
p=p

1 . . .
B »E >>a, the secondarycattering cross section has the power ok/@{). Higher order

scattering has even higher power terms.hdudigh, individually, the secondary and higher orders
of scattering have negligible terms, they may not hered if the combined edtts of different
scattering paths are summed. For example, in thendacy order cattering, there ara(n—1)

high order terms with the power of KJ&'). Depending on the wave frequencies, fiber radius and
the configuration of the distributions of fibers, the combinedatfbf seondary sattering cross-
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section may be significant. The same statement may be made regarding theotuigreof
scattering. Yet asymptotically, we are able to let the quantkyadbecome as small as we wish.
Therefore a%ia- €, only the primary scattering is quantitatively significant and highéers of
scattering are legitimately ignored.

For configurations such th% >>a andb=2a for the adhcent neigborhood of fibers,

more detailed analyses need to be carried out. As stated in the previousp}harﬂt@across-
section for prlmary sattering has the magnitude to tlheder of power Of'a‘) in the

summations ofﬁ Consequently, for the primargadtering cross-sectiof2.35), it has the
p—p

quantity to the order of magnitude k3¢"). Observing the secondargastering(2.37), given

p=1, n=-2, (or p=-1, n=2) and substituting the relevant terms from the asymptotic formula, we
have the minimum power of ®{a*). Given p=1, m=-2 and n=2(or p=-1, m=2 and n=-2) for the
tertiary scattering2.38), the minimum power is againk)@*). Similarly for 4th order sattering

it is p=1, m=-2, n=2 and r=-2(or p=-1, m=2, n=-2 and r=2). For 5th omgtesing it is p=1,
m=-2, n=2, r=-2 and s=2(or p=-1, m=2, n=-2, r=2 and s=-2). Therefore by induction, in the
Rayleigh limit, the quantities of theattering cross section of multipheder are alway®(k’a®).

By the foregoing Rayleighmit analyses(2.36-2.38) have the following results for a two-fibers
composite system where the fibers are in close contact with each other:

2
L (uz ulj _(1_&]
o2 \et) 20 o

4
o - ikf’a“ ,uz_/*llj

32\t i,
6
O_gx - 7T2 k13a4 I’lz _I'll (239)
512 My + 1y

2n
o - kf 4(/12 /'llJ ,
2'm3 My + 1y

for all orders of eattering. Note that in Equatiof2.39) the power ichinishing factor is

21 %%g Apparently, whema= L2 , the diminishing poweraictor becomes zero. Physically

2 1
this states that when the sheaodulus of the fibers and matrix becomes the same, no re-
scattering phenom®n would exist in the composite. Only primapatering would exist for
such situations. As for another case for whiehO andi2 #0 (or (170 andp2=0), the power

diminishing fictor becomes 1/16, which is approately 6%. For the most dense fiber
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configurations, there are six adgnt fibers@wrounding any particular one: coordination number,
CN=6. Therefore for this situation, about 36% of the power is transferred imitedately
adjacent fibergor each scattering event.infflarly, a significant araunt of energy (though less

than 36%) is also transferred to the outer layers of fibers and that energy must be taken into
account. Overall, the small fiber-separations configuration induced the most mulititering
phenomenon in the composite.

For higher frequencies we resort to the numerical computation of Equéigss, (2.37)
and (2.38). Specifically, we arrange a two-fiber-matrix system to inaéstifpe aninishing
scattering effect of the shear wave. The results are shown in Figiare a7 wide range of
frequencies. In the Figure, both axes are logarithmic scale, with the first 5 ordeegtefiisg
shown. Observe that for the low frequency range, timinighing efect of the scattering power
is apparent. Also for this case, tlwatering energy has a linear relationship ufpfG6MHz. Yet
for the high frequency range, the curves tend to coalesce. This implies that for high frequencies,
the amount of gattering energy for the first five orders at least in this particular two fiber-
matrix system) tends to be the same order of magnitude.
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Figure 7. First five orders of extinction crogegonfor a two fiber-matrix composite system.
a=2x10° r1,=2.5a, 01,=30°, P1=235.7, =801, M1=1.28x10, H>=8.077x10 (all units in Sl
system).

30



2.5 Quasi-crystalline (QC) approximation

In this section we intend tprove, from the perggtive of the consecutive-events
approach, the validity of the quasi-cryt@ approximation in the apmation of wave thary for
fiber-reinforced composites. The quasi-crifsta approximation is widely used in wave theory
for evaluation of composite aterial properties. For the derivation ofamerial properties of
fiber-reinforced composites, it is usedpriori to break the statistical hierarchy of spatial
averaging procedures [35]. Specificallytates that the spatial average of a fieidction, when
two scatterers are held fixed in space, is equivalent to when only one scatterer is held fixed in
space. This can be written as
Emiﬂ: [Fmili ¢] )
(2.40)
where i’ and ' represent two different scatterers in the space domainFands a wave
function. In Equation (2.40), the bracket (< >) is denoted as the average éctagap) value
of a function.(f), and(f) are defined as

(f), :J-...J.vf (p(R,+R,|R,)dT ,--- o,

<f>12 :J"'J.Vf Ep(Ra--.Rn|R1,R2)dr3--- dr,.
In (2.41), p(R,---R,IR,) represents, when the location of scattéteis given atRi, the joint
probaliity density of lacating scatterer2’ at Rz, scatterer'3’ at Rs, etc. $nilarly,
p(Ry--R, IR, R,) represents, when the locations of scattefeérsnd ‘2’ are given aR1 andRy,
the joint proballity density of lacating scatteref3’ at Rs, scatterer4’ at R4, etc. Note that
vector Ri is appropmtely regarded a&i=(R,®) for our case (Figure 3), where the polar

coordimtes are in a global sense in the composite domain. The integration parameter
regarded as integrating over the defined spatial domain.

(2.41)

For a fiber-reinforced composite for which there are N fibers and the fibers are randomly
distributed in the matrix,
p(Ry)=pRi), I=i=N
p(R2|R)=pRI|R}), I<ij<N, iZ]
p(R1,R2,...,RV)=p(R1)p(R2.Rs,...,Rv|R1) (2.42)

=u)p(R2[Ry)p(R3,R4,....Ru|R1,Ry).

The first equation of (2.42)tates that therobaliity that a fiber is leated atRi is equally
probable for all randomly distributed fibers within the domain of the composite. The second
equation states that therditional probaltity for any two concerned fibers is the same. The
third equation is a generalized expansion of the joint pililyabf all the fibers concerned.
Therefore, as the probiity density isnormalized and the area occupied by a fiber isewtgll
in a sufficiently large domain, B() should be equal to 9/where § is the cross-sectional area of
the composite domain. For definiteness, we have
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_v[p(Ri)dri :gédri :gl‘[dri :—ix s=1. (2.43)

From the above, the prohlily that a fiber i’ exists in the composite domain is indeed equal to
1. The conditional probability densityR(R;) can be defined as

1-1(y)
p(RIR)=— (2.44)
wheref(rij) is a correlation function, arg represents the separation distance of fibearid j'.
Apparently,

1
P(R,IR,) = g(l— f(ry) ,n2>2a
=0 ap<2a. (2.45)

The first equation of (2.45) shows thaf(fij)=0, then there is no correlation between fiber ‘1’

and fiber ‘2". Or equivalently, if(rij)=0, thenp(R2|R1)=p(R2)=1/s. The second equation simply

states that there is no infpenetration of fibers. For simplicity, the higher order conditional
probability will be set equal P(Rj|Ri). That is,

p(R:IR.R;) = pR4IR,)

p(R4|R1’R21R3)= p(R4|R3) (2.46)

We use the multiple scattering amplitude; of Equation (2.25) to demonate the
validity of quasi-crystalline gproximation. From Equation (2.25), theatering amplitudemi
can be rewritten as

A= am(ime”‘lxl + Z i AmiH( KT é“’“j. (2.47)

p:—oo

Note that in obtaining (2.47), fiber ‘1’ is chosen as the first patamof the scattering
coefficient anda,, :DE (Equation 2.10). Further, let the amplitugeequal to 1. Accordingly,

m

the expectation valueAn1>1 is (when the location of fiber ‘1’ is held fixed)

<Am>1 = am[imeiklxl _,_i ijj A Hp( K[;)éw“ d, - d0 (Rz"'RN|R1)] ) (2.48)

The parametelj” under the first summation symbol in Equation (2.48)adatks all fibers except

fiber ‘1’. Since the fibers are randomly distributed in the composite, we can chose any fiber ‘j
(except fiber ‘1’) to perform the integration without loss of generality. That is, the results of the
integration term on the right hand side of (2.48) are independent of the fiber number we chose.
Thus if we chose fiber ‘2’ and use Equations (2.40), (2.41), (2.42) and (2.44), then for the
integral in (2.48)
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J J.Ap+m2 klrzLZ épelzdr d- mRZ NlRl)
:J"'J'Abmsz kirlz)épelszzF(RﬂRl) ds;" dN pRé"RN|R1,R2)

= ,[ Hp(klrlz)eipelz< A 2>12 17 o) f(r12) dr,

S

(2.49)

= _[ Hp(kirlz)eip912< Aim 2>2 L(rlZ)dTZ_

S
Note that in (2.49), the quasi-cry#itee approximation (2.40) is applied to obtain the last integral
from the third one. By doing this, we assumdgriori, that the quasi-crystallingoproximation
is valid in our case. This assumptiornll iee proven approxirately valid by comparing the
average scattering coefficients obtained by this assumption with those obtained by the
consecutive-events viewpoint. Next we assume that forchktesing coefficients, basagon
the randomness distribution of fibers, an average and spatial periodical value exists such that

(Ay), =i"AEY (2.50)
whereXi is the location of fiberi* according to the global coordite system (Figur8). Then
Equation (2.49) becomes

Prma elklxlj'H k_LE é9912é<1120039211 f( )dTZ

p+m
S

=iA, @ L[ Hy () 6= 3 (-1 F LK) (1 (1)) rgng6 . (2.51)

S=—o00

ik, x, 27T
=1 Ap+mekx _[ (k1r12) (k1r12)(1_ f(rlZ))rler
Substitute the final result of the integral into Equation (2.48), then

imAmeile1 = am( mdaX o Aim éklxl(l\l_% i J:; Hp(klrlz)‘]p(lﬁrlz)(l_ f(rlz))rlprlz]
e (2.52)

_ am[imem +"Rnd 2 3 [ (k) I kali- (1) d}

Note also that in the above equation, the number of fibérss ‘assumed to be large and the
number of fibers per unit area of the cross section. iS'hen (2.52) becomes

A= am[1+ Ay 27T Z ij , (2.53)

where | -_[ (ki) (kero)(1- f(r,))radr,,  Apparently the average scattering coefficients

Anm are the same fagach fiber because of thendom property of the distribution of fibers. For
simplicity, we resort to the low frequency rangeaaf to further simplify (2.53). For low
frequency, only three terms @fh are dominant, i.e.a1, & and ai. Furthermorea.i=au.
Therefore Equation (2.53) reduces to a linear system of equations:
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(1-2mya 1) A, - 2mya |, Ay 2TngayLA= &,
—2711080I1A_1+(1— 2rm,a, Io) A— Zmnya |, A= a, (2.54)

=2y |,A = 2mmya, LA+ (1= 2mneayl) A= 3y
where theA's can be solved easily. For brevity, oy will be explicitly calcuated for
comparison. Thus from (2.54) the scattering coeffidderiiecomes

A= a1+ amy2a L+ a,l)+ 4P E(23ab b+ 28 L+ 2K 1L+ Bak+ )+
srrmy(4ga bl; + da,& £+ 48 L L1, + Bal L1+ 2417 + 27151, + (2.55)

a2, |21, + 28,82 121, + 22,8 | 12 + 2a,a2121, +ag|g)+...]_
A1 andA: can be obtained similarly.

The forgoing teatment has been to calculate the scattering coefficfemthrough the
use of the quasi-crystallingpproximation (2.40). Next wattempt to achieve the same goal
through arguments based upon thecessive-events approach. Starting from Equation (2.47),
Am1 can be expanded into successive-events series summations by re-sub8tiuiting the
function itself. Then

A, = am[imé"lxl+ S S P e H(kp) %+
>33 H( k1)

(2.56)
ZZ Z Zap+mamw"jp+mméhxk l_h(Krj.k)eiqgjk H)( Iﬂ‘]) ‘ié)e1j +]

By taking the expectation valugAm1>1) of the above equation and calculating relevant terms
only when m=0, (2.56) becomes

]=2 p=—o

00

+]ZZ gj pz i <apap+qip+qeik1r1kC059k1 HJ( K Iik) eiqejk H)( Iﬁ[]) é’eu >l+...J . (2-57)

=—00 (=—00

Here the beginning term (with magnitude ‘1’) in the parentheses can be recognized as the
incident wave, the second term (with double summations) as the incident pricadigrisg
waves, and the third term (with quadruple summations) as the incident secocakheying
waves. The double-summations term can be reduc@dmﬁZailﬁ aolo) by using Equations
(2.41-2.46). This is eactly the same as that of the sed term inside the square bracket of
Equation (2.55). The incident secondapatsering wave of(2.57) consists of two distinct
categories of the scattering path. One is the repeatkess: the ‘follow up’ path is the inverse of
the leading path. The other is the nonea@edroutes: the ‘follow up’ path is another different
path (Figure 8). Specifically, the regted semndary routes ass@te with those terms with

N

summations Zz) , While the non-repated seandary routes ass@te with terms with
—</k=1
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N

N
summations_Zm% . The summation terms associated witbn-regated seandary routes
]= J

reduce to &°1g( all,+ Zl,+ &1+ @al}+a]l7), which is equivalent to that of the
third term inside the square bracket of (2.55)mil&ly for the tertiary sattering, thenon-
N N N

repeatedoutes associate with those terms with summajij?k% jlﬂgj#k. They too reduce to the

fourth term inside the square bracket of (2.55). The same arguments can be applied to higher
orders of scattering.

Therefore, by excluding the terms asated with the repeatadutes in Equation (2.57),
Equation (2.57) reduces to Equation (2.55). That is, for all the terms assbgvith non-
repeatedoutes in (2.57), they all reduce to those in (2.55)efachorder of sattering. Thus,
using the quasi-crystallingpproximation, Equation (2.40) is equivalent to excluding theossf
associated with repeateoutes from the consecutive-events viewpoint. The next question which
should be asked is ‘Are total effts associated with the repeatedtes negligible compared to
those associated withon-regatedroutes?’. Apparently, the primary scattering event is not
affected by the use of the Q@moximation, only the secondary and higher ordersattsring
are. Observing (2.57), there di¢-1)IN-1) terms (counting only the summations with the fiber
range) associated with sewary sattering, of which(N-1)(N-2 terms are ‘non-regated’ and
(N-1) terms are ‘repeat. Smilarly for tertiary gattering, the total number of termghé-1){N-
1)AN-1), of which (N-1)IN-2)(N-3) terms are ‘non-regated’ and(N-1)(BN-5) terms are
‘repeatel’. Smilar gatements can be maétw the higher order ofcaittering. Under the same
order of sattering, the magnitude of the scattering coefficients (either ‘repeatettionr
repeatd’) is assumed to be the same order for a random distribution of fibers. Consequently for
a composite with a large number of fibers and dachorder of sattering, judgingrom the
number of terms by which the two categories of scattenduges associate, the wave fields
associated with ‘repeatebutes are negligible compared to the ‘noneaed’ ones. Hence the
justification for use of the quasi-crystalline approximation is established.
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2.6 Summary

In this study the multiple wavecattering phenommon in fiber-matrix composites is
investigatedrom a swcessive-events perspective. Following the multiple scatteppgpach,
the shear wave functions (the particle shear displacement Yaavas case) are calated and
summed for the consecutiveattering events. The results thus obtained (an explicit zo)udre
proved to be the same as those obtained from the many-body approach (an implicit solution) by
previous investigators. Proving the mathematicalcexess of the multiple scatteringpsoach,
we next study the energy transfelio by considering the extinction croseetion of each
scattering event. Asymptotic analyses arefqgeed for the extinction crosgetion for the
Rayleigh limit (low frequency limit). The analytical resuits the Rayleighimit show that the
shear wave diminishing poweadtor has a simple relation with the shear modwlusf both the
matrix and fiber. And the order of magnitude of the extinction cressesifor each succeeding
event is always @¢a’), in whichk: is the wave number associated with the matrix @risl the
fiber radius. Numerical computations arefpemed for the first five orders otattering, with a
specific arrangement of a two-fibers system and over a wide range of frequencies. The results
show that at higher frequencies the quantities of extinction cross-sdaotiaie first five
scatteringorders tend to be in the same order for this particular arrangement of fiber-matrix
system. Finally, the widely used quasi-crystallipgoraximation in the tatistical-averaging
technique for wave theory is proven to be valid from the successive-events viewpoint.
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CHAPTER 3. AXIALLY SHEAR WAVES IN FIBER-REINFORCED COMPOSITES
WITH MULTIPLE INTERFACIAL LAYERS BETWEEN FIBER CORE AND MATRIX

3.1 Introduction

The simulation of interfacial zones between fiber core and matrix in a fiber-matrix
composite have been studied extensively in the past. The interphase is in mostecdsdsogr
coating the fiber core. Others may be created by chemical reactions between fiber core and
matrix. The interfacial regions, whether they are deliberately made by coatings or inadvertently
created by chemical reagti, will affect the pgormance of a fiber-reinforced composite. Many
structural and mechanical models have been built for the interfacial zone to predicedtsoeff
overall materiaproperties of a composite. For example, a spring model [57] and ectiesf
fiber model [59, 61] were used to siatd the mechanical behavior of the interfacial zone. By
varying the properties of interfacial paratars,pronounced changes in the stress distribution and
the overall elastic moduli of the composites were found. Also, guided waves in composite
cylinders can be used to characterize the fiber-matrix interphase [58, 83].

As previously intended by many authors, wi# imvestigate the influence of interfacial
properties on the overall efftive material behavior of a fiber-matrix composite. Neither a
spring nor an eéctive-fiber model \ll be used, inead a micromechanical modellivbe built
and a statistical gproach [35] used. The aterial properties of the interfacial regions are
assumed to have a linear or exponential distribution between the fiber core and matrix to
demonstrate the multiple interfacial-layers caliglof the model. Eféctive axial shear adulus
(M), axial shear wave phase speB) énd axial shear wave specific damping capadity 4re
calculated. We start with the eigenfunction (Bessel function) expansion of the wave equation
solutions of the displacement fields of a thpdmse composite. Theattering coefficients are
then obtained by solving the boundary value problems. Tia¢istEal considerations are given
and averaging techniques are used to extract the global effective mptepalties of the
composites. Finally the case of three-phase composites are generalized to those of multiphase
composites in order to study theesfts of arbitrarily varyingroperties of the interfacial region
on the overall effective material properties of the composite media.

3.2 Axial Shear wave scattering in a matrix-fiber composite with an interfacial layer
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Before studying the waveattering in a fibereinforced composite, we consider a simple
case where waves are scattered by a fiber (with an interfacial layer) imbedded in a matrix. Let
this fiber be incident by a plane harmonic axial shear displacementuvawich is generated
at an infinite distance from the fiber (Figure 9). The domain consists of a matrix (denoted by 1),
and a single fiberi* (the interfacial region and the fiber core are denoted by 2 and 3
respectivey). The |nC|dent Waveutn ), the scattered wave in the matmxI and in the interface
and fiber coreL(. andui ) can be expanded as a series summation of the cylindrical function.
Thus

U" = o = iR Z 3 kp) &° (3.2)

y —m_z_mAn. (kr)em™ (32)

u = Z( J(k 1)+ GiHi( k)™ (3.3)
mz (K r)E™ . (3.4)

In the equations above, the incident andttering waves are satisfied as solutions of the wave
equationD2u+ k’u=0. J, is the Bessel function of the first kintl,, is the Hankel function of
the first kind. Ami, Bmi, Cmi and Dmi are scattering coefficients which can be sol¥ed by
applying the boundary conditions for the system. Note that in Figunmifrgo Figure 3 in the
previous chapter,R ,®) are the global coordites of the fiberi* and (i ,8) are the local
coordirates referred to fiber’: The frequencyw of the system is such th&i=w/c1 (also
ko=alcz, ks=alcs), wherek is the wave number, aredis the wave speed. Note that viu/ps,
C2=VlkIp2 and Cs=Vls/ps ,where 4 and p are the shear modulus andaterial density,
respectively. The amplitude of the incident wave is assumed to be unity. The time tckor e
omitted for all quantities involved in the wave equation for thheady state @ndition. The
boundary conditions are such that the axial shearadispient and shear stressia@ andri=b
are continuous. Then

(uin + ul)ri:a = qzlri:a
2 i 7]
HIE(U + Lf)n:a = uzxuﬂm
, (3.5)
Uhs= Ll3|iﬂo
7] 7]
,uzﬁiuizli:b = IJSEiuﬂi:b y
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Figure 9. A representative two-phase fiber embedded in the matrix.
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The four unknown attering coefficients can be solvéat by substituting the relevant terms,
Equations (3.1-3.4), into Equation (3.5). Consequently

_ e Rees i (i (yH(Ko2) ~ Yy du( ) 5
An = Hin(k,8) [ (Y, Y5~ % Vi) s )]

- ik;R cosg :m 2“11 y4
Bmi - _eklR s@ i ( J
Y2¥s

SN R (3.6)
C_ = daRcosa jm 2i/-11£ Y3 j
h m\Y,Y5= %Y,
@iy, [ysHm(kzb) —m(&@)
" Ju(kb)ma oY~ W Ya ’
where .
Y =tk (ka H(ka-t,k 3 ko H kR
V. = pk () Hh( K- Kk F( ke 3 H( K -

Y3:/~13k3‘]m(k2©‘ll(l§b_l'lzl§q( K}i’rl é()b
Y4:I*l3k3‘];n(k3© Hn(kzb_uzlﬁqn( KbH( 5)3

For the multiple scattering case in which the number of fibek ([8=2), the solutions of the
scattering coefficients in Equatio(&.2-3.4) are the same as in Equations (3.6), except that the
term€“® %" should be replaced by

N o .
RIS S A Ho( )€ (58

JA n=—o

Therefore rewriting the scattering coefficients for the multiple scattering case, we have
Avi = Faan

Bmi = Fmibm
Co=Fc (3.9)
Dmi = I:midm1

where
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_ 1 {2m0ﬁ4&®—xdka_
" H,(kd (Y, % = %)

__ 2 Ya
=2 )
M\ Y,Ys~ Y,

Cm=2iul[ Y; J (3.10)
™\ Y,Y5~ Y,

_ 2y, [ysHm(kzb)—yAn(lst)]

" J.(kb)a YoYs~ WiYa

Fu =S S )

J#l N=—c0
If the wave length is large compared to the fiber radiuskae>1, thenam in Equation (3.10)
can be approximated to be

a="° k3’

it

m (3.11)
_ kay’
% = m!(m—l)'um( 2) m=t
where
b? b?
U = 2(1 a2j+d3¥_1
pz\"
(%—%{;)%%+®)
Um:2 b2 m -1
a=mm- m % | ~a+m)m+ m)
_ 1 (3.12)
i 1y
- Hs
ST
P2
P
% - p3
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3.3 Statistical considerations

3.3.1 Random distribution of the fibers

Here we consider only the spatially random distribution of fibers in a composite system.
The geometrical parameters that affect the distribygrobalility of the fibers in the composite
consist of the number of the fibers per unit volumeand the radius of the fibers’! Other
than these two factors, a statistical parametenegds to be determinedilfjvassign a number
for this pararater). The definitions of thetatistical notation and thproballity equation in
chapter 2 (2.41-2.45)iktapply in this chapter. The followingatistical treatments arénslar to
those in [35], except that the proldskic correlation term is defined with more explicit
geometrical information.

3.3.2 Simulation of the correlation function

The conditional probality p(R2|R1) will be considered in moreetkil than in the previous
chapter. Forip (the distance between fiber 1 and fiber>?), the probalty that fiber 2 exists
at an infinite distance away from fiber 1 is the same as the pligb#iat any single fiber exists
in the composite without considering any other fibers, which is ési¢gn2.5). Yet for (2<2a,
p(R2|R1)=0 because of thaon-penetration condition of fibers. For the case where the fiber
radius is smaller and the number of fibers per unit volum&nger, it is more likely to find
another fiber at a given distance away from an existing fiber. This corresponds teetber s
slope of the correlation curve in Figure 10. Accordingly, the correlation pilibpalR2|R1) can
be simulated as arxponential function ofie. Thus we can rewrite Equation (2.45) with more
detail,

1
p(R,IR,) :g(l— f(rlz)) , n2>2a

=0 i1p<2a (3.13)

where f(r,,) =Ce (el O<C<e%a )"
The above is usually referred to as the ‘well-stirred’ approximation [37], which is not valid for a
high concentrations of scatterds for lumpy concentration, in certain part of the composite

domain, of scatterers). For a large sampldpon large domain of the comp03|té—>e7 (i)

due to the fact that the number of fibemsreunding the existing fiber is small compared with °
(a large number). Eactly how large a numbeN* of fibers (or how largew) do we need to make
the correlation function a reasonable approximation is mostigtisteal issue. We MW discuss

it in due course. Note that thiasstical parameter {sneeds to be determined statistically (it is
assumed that=0.1 for all the cases). Yet for our conygiional analyses, a numbeillvbe
assigned Finally the normalization requires that

I|m RZI r12 rlzdrlz—
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Figure 10. Simulation of the correlation function.
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3.4 Averaging technique

From the last equation of (3.10), due to the indistinguityaly2.42) of the fibers, one
can chose fiber 1 to investigate the expectation valdenoWithout loss of generality. Thus
F IklRlCosw‘lm'f' mmammH KE'@&j . 3.14
> 5 Fonnat{t) (3.14)
Taking the conditional exgrtation value oFmi1, we have, by using (2.42) and applying the quasi-
crystalline @proximation (2.40) (which has been proven valid for fiber-reinforced composites in
chapter 2),

(Fy), = €lofconim r‘b(l——) Z A j(l f(r, 12))< Fn+m‘2>2Hn(I<lr12)é”"“dT2 . (3.15)

=—00 —
n |r2 r1|>2a

For a large sampld/N can be ignored. By substituting (3.13) into (3.15), the above equation
becomes

2a-n
(Fu) =€ 52imen S g, | [1— o /e ]< Finz), H(KE) 8% d, . (3.16)

n=-e =2
Assume the existence of an average wave such that
(Faiy, =i "™ , (3.17)
whereK is an effective wave number in the composite system. Then by applying the extinction

theorem (the incident waves vanish upon entering the composites [35], or the incident wave is
canceled by waves generated at the boundary [31]) and using (3.17), Equation (3.16) becomes

Fm=2moniammF ”{kl J,(2Ka)—H,(2k1) H(zkla)%uzKa))—

(3.18)

2a-hp

J.O e(azlno)% ‘]n( K[z) Hn( k1"12) r12dr12]-

2a

For wave lengths that are large compared to the fiber radius, the above equation can be
simplified to be

]
1

Fm:ZmOn__wamm ﬁm%f D k1 K2 _Elng , (3.19)
where

2a-%

0 —kl% K

a?/

|n:j2klae( ) Jn(zxan(x)xdx . (3.20)

ApparentlyIn becomes zero in the stafimit. Equation(3.19) can be considered as three
homogeneous equations kv, F-1 and F1. For the nontrivial solution of th& terms, the
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determinant of the homogeneous equation must be. z&8hus the equation fdk can be
expressed as

[(Cul —1—%cul( l, + Iz)j(%cuol(ﬁ 1) —;Czti b+ Ll)}(%)z

K
K

™, . i T _
+IC u 17 (y + ul)+(Cl15 +ECUOIO+1)(E(:U1( lot1,)+1+ cul) =0

Note that €' in (3.21) is the fiber volume &ction in the composite. In the stdltroit, the eove
equation reduces to

-2 cuh(u+3u) (3.21)

2

K 1+cy

— 1 =(1+c , 3.22
] sron i 622
which can be further simplified to obtain the global shear moddlu3 hus

M —_
M_1l-cy (3.23)
g, 1+cy

For low-frequency dynamic casés/ki) cannot be obtained dictly from Equation (3.21), since

the In terms (3.20) are functions @f/ki). Therefore to obtain the dynamic quantities, we need
to give an initial value ofK/ki) and substitute it into (3.20) to obtain initial valuedoferms.
Equation (3.21) can then be solved, using the initial values offzttexms, to obtain the first
approximate value ofK/ki). This value would substitute back to (3.20) to start another round of
computations. By recursively using Equati¢B<0) and (3.21), a convergent quantity(tfki)

can be obtained. Evidently the static valu¢kdki) obtained from (3.22) is the best caradi to

be the initial value. Note that in the low- frequencies dynataite sthe overall effective wave
numberK in Equation (3.21) is a complex number,

K=ReK)+i ImK) , (3.24)

w . . . .
where Re(K):E. B is the overall effective shear wave phase speed in the composite. The

imaginary part ofK is a measurement of wave attenuation in the composite. The specific

K
damping capacity, which is defined at%:4n%(l<)) is widely used for theattenuation

measurement.

Observing Equation (3.21), the eétive globalproperties are dependent on the fiber
volume fraction (€'), the In terms, anduo andui. Apparentlyuo andui are functions of the
shear modulus and density of the constituents of the composite and their structures. For a
composite with multiple interfacial layers, only andui need to be modified so that Equation
(3.21) can be generalized. Singeandu: in Equation (3.12) are apparently derived from the
scattering coefficient in the matrix regi, we Wil apply the samerocedures (as irestion3.2)
in the next section to obtain this particular scattering coeffittgrthe multiple interfacial-layers
case.
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3.5 Scatering coefficient in the matrix for a fiber-matrix composite with multiple
interfacial layers

In this section we sty onlyuo andui (as in Equation 3.12) for a fiber-matrix composite
with multiple interfacial layers. A representative fiber with multiple interfacial layers is shown in
Figure 11. We desigtie the fiber core region & and the n-layers (starting from inner layer)
interfacial regions as ‘1,2...n°. Theaterialproperties (shear modulug, and material density,

p) for the interfacial regions are givaxccording to the desigted numbers. Thproperties in
the matrix are simplyt andp. As we did in the sectio8.2, a boundary value problem needs to
be set up and the solutions need to be obtalned forctteesng coefficient in the matrix. The
incident harmonlc axial shear displacement Wave is again

U :ékx:échosm z | ‘1“ k')éne

The dlsplacements in the matrlx fiber and each interfacial region can be written as

u= ékR“’s‘Dzl\lﬂkré“e ZEth (ki &° = a

m=-oo

- Z(Ann kr + anHn(knr))émg q> rz Q1

m=—oco

-m_zm(Ann_ KosT)+ ByarHid ko)) €™, 2,2 12 g, (3.25)

= Z Andn(k1) + By Ho k)€™, a2 12 g

m=-co

= 3 AndalkoDd™, a2 ¢

m=-co

a7
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X

Figure 11. A representative multiphase fiber embedded in the matrix.
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Note that in the above, theattering coefficient in the matrix Bm in the first equation of (3.25).

The number of unknown coefficients in (3.25) is 2n+2. The number of boundary conditions
(stress and displacement continuifgr ‘n+1’ boundaries) is also 2n+2. Applying the
displacement and stress continuity boundary conditions, we get a matrix equation

[AX}={B} , (3.26)
where[A] and{B} are given (Appendix C), an{c@ are the scattering-coefficients vector which
can be solved®¥ can be written as

0
El
O

, (3.27)

O
MOOoOOooOOoOoommoOod

EB.,

and that{x} Is a (2n+2) vector. Rewrite Equation (3.26) as
ALl A21 Al

1 1A A, :
=[A{B =—| © . .

S Ry I
Ain A)—ln Am

Here Ajj is the cofactor of the matrifA] and P is the determinant dfA]. The scattering
coefficient in the matrix region of the composHe, is therefore:

B, :ﬁ[AH,an(kanﬁ A uki( ka)| T &= (3.29)

Apparently if (3.29) is rewritten as
Bm = bmimelchosdJ ,

whereb_ =ﬁ[AH’nJm( ka)+ A, 4 k3 kal], (3.30)

then the multiple scattering equatitor the multiple-interfacial-layers composite (as in the last
of Equation 3.10) is simply
N 0

Fo = €48 im+ z z Frem e mHd K 1) A (3.31)

JZl n=—c0

{B} . (3.28)
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The determinan®y, the cofactoAn-1,n andAnn can easily be computed to obtain the property of
bm. As in Equation (3.11)1 anduo can be calculatefitom bm for wave lengths large compared
to the fiber radiugn. Consequentl1 can be approximated as

17T 2
=, (ka)u (3.32)

whereu, = % A1 is the determinant of &n+1)x(2n+1) matrix [Ai], andA; is the determinant

of a(2n+2x(2n+2 matrix [A2] (Appendix C).
Forbo, different asymptotic values would be used fetedminant [A|, A, ,J m( kan) and

A, ukJ,(ka,) in Equation (3.30). Consequently the’ ‘becomes

Ti
=7 (ka)'y (3.33)
2
whereu, = %— %j % —1] for fibers with 1-layer-interface,

&

2
—| Ps _ 2] Ps =Pz ( j(pZ plj ( ][pl po) 1| for fibers with 3-
p \la)l »p a,) | p a ) p

layer-interface. Generally

&_[an—l]z(pn B pn—lj _(an—ZJZ(pn—l _ pn—z)_[ams]z(pn—z _pn—sj
p a, p a, p a, p
__(azj (ps pzj ( j (pz plj (ao) (pl po] 1}
a, p a, p a, p
for fibers with a n-layer-intedgice. Thus thei and up terms are established for the fiber-
reinforced composite with multiple interfacial layers.

2
=Pz ﬁj P= Py —(aoj (plppoj Jfor fibers with 2-layer-interface,

(3.34)

3.6 Numerical Results

A computer program, based on Equations (3.20-3.22), (C3), (C4) and (3.34), has been
created to calculate the overall effectivemalized axial shear modulug {u1), the normalized
axial shear wave phase speBd3) and the axial shear wave specific damping capaéf)yof a
multiphase fiber-matrix composite. Note that the subscript ‘1tatds the mechanicptoperty
of the matrix material. Apparently when the wave frequency becomesize in satic state,
thel, terms in Equation (3.20) become zero. Then (3.21) degiseta(3.22), from which it can
be further simplified to (3.23) and/u;, can be obtained. For the low-frequency dynanates
(our equation applies only when the frequencies are suctkihat0.1), B/f1 andW can be
obtained as previously described. The and u; terms in (3.21) depend on theatarial
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properties (shear moduli and density) of the constituextémals in the composite. For the sake

of demonstrating the applicability our program, we assume that thatarialproperties of the
interfacial region possess either a linear or exponential distribution between the fiber core and the
matrix. Thus

f kface
nelei )
H, My \ £

f kface
(2"
0, P, N

Here again the subscripts ‘1’ and ‘2’ indie the materigdroperties in the matrix and in the fiber

core respectively, and’ ‘indicates those in the interfacial regi The fi’ indicates the distance

from the fiber core to the individual interfacial layer aridis the whole thickness of the
interfacial region. The thickness of the interfacial layer is evenly divided. Finaliktaeé'
indicates the xponential order of the aterialproperty distribution. Apparently whekiace=1,

the interfacial zone is a linear distribution, otherwise it is an exponential distribution (Figure 12).
Note that the composites for our case are such that the fiber core is more stiff and less weighted
than those of the matrix. Specificallt_\,llz1.28éLO Pa,uz:8.08éO Pa, =801 Kg/n?, P2 =234.7

Kg/m®. In Figure 13, the damping capacity as a function of wave frequencies for various cases of
different interfacial thickness is shown. As expected, the thinner the interfacial depth, the less
damped the composites. In Figure 14, the damping capacity of a linear distribution of the
interfacial region is calculatefdr various cases of different numbers of divisions. The Figure
shows that if the number of divisions of the interfacial region increase, the composites is less
damped. This can be explained by the scattering of energy due to the mismatch of impedance
when waves propage between the fiber core and matrix. Morerpttase divisions mean that

the composite has smoother change of matgmiaperties and less impedance nasoh.
Therefore less energy isattered and the composite has a lower damping capacity. The same
phenomenon can be observed for an exponential distribution case in Figure 15. Finally in Figure
16, damping capacity is calatéd for various cases of the different exponential order
distributions of the interfacial regions. Figure 16 shows that the exponential order cases are more
damped than the linear distribution case. Again the unevenly distributed nmartapeities in the
interphase area cause more damping for the composite.

(3.35)
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kface=1 kface=2,3...

Figure 12. Schematic represation of the interfacial materigdroperties g and p). When
kface=1, the materigiroperties are linear distributed. Whera¢€=2,3..., they are exponential
distributed.
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Figure 13. Specific damping capacity as a function of wave frequency for various cases of
interfacial length ('d', the percentage of the fiber radius). 'c'is the fiber volofrabtil is the
normalized &atic shear mdulus. BB: is the normalized shear wave phase speed. Note that the

normalized shear wave phase speed does not change for the low frequencies ranges and the
statistical parameteris given as 0.1.
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Figure 14. Specific damping capacity for different numbers of interfacial layers. 'n' is the number
of layers. 'kface' is thexponential order of the division. For &fe’'=1, the interfacial material
properties are distributed linearly throughout the interfacial region.
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Figure 15. Specific damping capacity for different numbers of divisional interfacial layers. All the
parameters are the same as in Figure 14 except that xpbeeatial order of the division is
‘kface'=2.
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Figure 16. Specific damping capacity for various cases of different exponential orders of
divisions. The number of divisional layers is 'n=500'.
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3.7 Summary

The effects of interfacial materigroperties on the overall mechanical behavior of a
multiphase fiber-matrix composite are investigatedugh the use of wave theories. The fiber-
matrix composite consists of identical fibers which are imbedded in a matrix. Multiphase
interfacial regions are assumed to exist between the fiber core and the matrix, and their material
properties are assumed to have linear or exponential order distributions between the fiber core
and the matrix. Only the case of axial shear waves is studied, thereforesthizefglobal axial
shear modulusM), the axial shear wave phase speBil dnd the axial shear wave specific
damping capacity¥) are obtained. The analyses indicate that the effective global material
properties of the multiphase composite depend on (in addition to the fiber voaotinfrc, and
the dynamic paraatersln) two parameterso andui. Ui can be represented by a division for
which both the dividend and divisor are determinants of square ma@i823. Uo is a series
summation (3.34). The numerical corgions show, among others, that the smoother (more
divisional layers), or thinner, the interfacial region the less damped the composite material. And
the composites with exponential order distribution of the interfacial region are more damped than
the one with a linear distribution. For all cases, waves in the composites are indispersive for the
low frequency range. Finally the statistical numhen €£quation (3.13) is given as 0.1 feach
dynamic case. The comations show that the change offer the same order) does not have a
significant effect on the results.
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CHAPTER 4. AXIAL SHEAR WAVES IN FIBER-REINFORCED COMPOSITES WITH
INTERFACIAL CRACKS

4.1 Background

Theories of elastic waves in a variety of debonded situations have been studied
extensively [62-78]. Solutiotechniques include the integral equation method [65,67,69,] and
the perturbation method [84-85]. A more straightforward approach is the employment of the
eigenfunction expansion of solutions which are scigd toboundary conditions [72]. With
various solution techniques and points of emphasis, elastic wave propagation in composites with
the presence of imperfettonding has been studied by many researchers [75-78]. In this
chapter, we adopt the method used by Bose and Mal [35], combined with the approach by Yang
and Norris [72], in dealing with fiber-reinforced composites with interfacial cracks. For
simplicity, an idealistic situation is assumed where all fibers in a composite have the same radius
and bonding situations. The bonding situations aterdhined by the half crack length, and
the orientabn, a, of the crack face (Figurg7). The approach we use is straightforward but
mathematically rigorous. Starting with the eigenfunction expansion (Bessel functions) of the
wave equation, we seek to obtain tlattering coefficients afsinctions of the geometrical and
crack parameters and as ftifynamic response of the waves in the composites. détesng
coefficients thus obtained are functions of themselves. By performing the asymptotic analyses
and, throughtatistical averagingrocedures, assuming the existence of agcéffe plane wave,

a system of simultaneous linear equations emerges. Both thepstn@rty (shear modulys)
and the dynamic properties (shear wave phase veBaityd specific damping capaci¥y) can
be deduced from this matrix equation. The cal®d averageroperties are generally complex
numbers for the dynamic case and real numbers fortélie sase. For thdynamic case, the
complex numbers of the mechanical properties correspond to the visco-elasticity aft¢hniealm
The real numbers for the static case correspond to the elasticity of the material.
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Harmonic incident
displacement waves

eikl(xcos‘90+ y sin90)
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Figure 17. Schematic representation of the incident shear displacement waves

and the polar coordinate of the fibiéiri the composite system.
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4.2 Boundary value problem

4.2.1 Single fiber scattering

Consider a single-fiber-matrix composite where the iaterfbetween the fiber and the
matrix has a debonded crack length &fradians (Figure 17). The center line of the crack face
has an orientation of an anglefafradians away from the horizontal radius line of the fiber. The
location of the fiberi® and a field point of interest as referenced to the center of the fiber are
expressed by the polar coordir system. The radius of the fiber is ‘a’. A$obe, the naterial
properties assoaied with the matrix W be denoted a&l’, and those assaatied with the fiber
will be denoted as ‘2'.

Let a plane axially shear displacement wae& ““*’s®) " pe incident upon the
composite. The incident waves are time-harmonic with a frequen@y dhe time factore™,
will be omitted because of the steady statadition. Then the disptement in both the matrix
and in the fiber can be written as

y = {“ Tk , (4.)
u;,r<a

where U is the incident wave,1uis the scattering wave in the matrix, angisi the scattering

wave inside the fiber. Since they are solutions of the Helmholtz equ@l?cun& k2L| =0, they
can be expressed as the series representation of Bessel and Hankel functions:

U _ e|k1Rcos(¢. o) Z |m‘1n(K|f) é'm(G. -6¢)

ZA”' (k)& (4.2)
= iam 3k 1) &,

Here k is the wave number in the matrix, ik the fiber. The coordate system (f) refers to
the center of the fibei’: Note that k=w/B1, ke=w/B2, B, =/U,/ p., B, =U, ! p, . Bis the

wave speedy is the shear modulus amdis the material density. From the stréssundary
condition on the matrix-fiber interface:

0 [ in _ 0
g (W) =hog (U)o (4.3)
Substitute the relevant terms (Equation 4.2) into Equation 4.3 and simplify,
eikchos(dJi—Ho)in I + A . — 4.4
Mk (ka+ AukH(ka= Bu, kJ( kg . (4.4)

For displacement boundary conditions we have
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= AU.(Qi),

=a

(um Ty )" _6i +¢i < ei <5i +¢i
(u +u; - uz) =0, other

ri=a

, (4.5)

whereAU;(8) is the dynamic crack opening diapément (COD) of fiber™. From elasticity, the

COD must be satisfied by the crack edge condition which is explained in the follovenhg. be

the amount of radians measured from the center line of the caaek fx is positive if it is
measured counterclockwise, negative if measured clockwise. Thus from Figure 17, x=0
corresponds to the center line of the craadef x=1 to the broken lines inclated. Obviously, x

can be expressed asg%. The crack edge condition requires (and can be shown) that the

0¥ 0
COD around the crack edge decreases proportionally Es}/?% where 1-|xp€ (a small

number) [67]. Since the Chebychev functions of the second kix) §appendix D) decrease

0 ¥0 _ .
proportionally as %E%H when 1-|x}- €, i.e. when near the crack tip, it is reasonable to use

Vn(X) as our base function for the series expansion of COD. The GO, can then be
expressed as

= Zﬁn,i%,i @ . (4.6)

wherepn; is the coefficient of the COD series and
| - @i nm i —¢i
0j)== =sin| -nsin , h=123-- . 4.7
@n,i(6i) - \'h( 5 j - ( 5 5 1 (4.7)

Substitute the relevant terms into the displacenm®nindary condition (Equation 4.5) and
simplify

|n (6o-9i) o
TN (k) + A (K= B N kS B i"3,(-nd),n0
m=l (4.8)

i 1 (kg+ A H(ka= B J Wzﬁlé., R O,
Combining Equations (4.4) and (4.8), yields
An :& )

i Dm mi

2 Fy, In'(ka) (66 o1
= nk1a D +ﬁ z Boii" 3 (- M) , n¥0 (4.9)
_ kR cog®;-0;) :m I& a) |m60 éi) n+1

F =e i ZmEm Zﬁn i ‘J )

and
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_ 2 Fy, J0(ka)
° rmkaD, 4E,

Budi (4.10)
Foi — eik1F§ co ®;-6,) _ (kz a) Bl,l

wher
=2, (k3 1 ka- A ki Ka
D, =3,(ka) (k- 23 & H kp
Z_llzk

pok,

The B terms (coefficients of the COD) in the above equations can be solved by requiring that, at
fiber ‘i’, the stress on the crack face be vanished. Therefore, atifiber °

%(Uz,i ),a=00+$ <6 <5 +¢ . (4.11)
The equation above becomes
3 (ka5 =5 80, (et iy (p5) -5, +9, <0, <3+, @12

p#0

SubstituteBmi terms from (4.9) and (4.10) into Equation 4.12 and multiply both sideg(By of
Equation 4 7. Then integrate both sides with respegtftom -Oi+¢; to O+¢;, and we get

1) 5I < 3iP(60-¢1) ™ )E.
% (63T R B+ 3233 (ke L (), .
= 8(;13')5?\] (kz )( :2:” 51mB1i_p;%ép(lga) Wl‘J péi)iﬁniinﬂ‘]n(_pai)'

Simplify Equation 4.13 further and rearrange, and we get the matrix equaffi@sin

[an, i]{ﬁn, i} :{Nm,i} ,  Where

ﬂn+30'(k18)(_1)m1]5_i2 Jo'(kza) By +

L= L '
Qi [rklaJO(kza) Dg 2 m 4k,

i™ 3 (-md; _Z‘]m—(léai im6o-¢i) . —ip(Bg=¢i) Im{ POI) _.me1 c Jp'(ka) Jp(ka (= ps; |
{u s e p;ap(kgae “Dop ! Z—szEp In(=p3i) In( 30

( 7)ot (4.14)

| B 8,3,k >

mﬂ

D
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Note thatdm's are the Kronecker deltas. TReerms can then be solved numerically in light of
the above equation. Equation (4.14) can be simplified further for the datsiease, i.e., when

the wave length is large compared with the fiber radius. In this case, it is assumed thaa both k
and ka are small compared to 1 and that the orden@fakd ka are approximtely the same.
Therefore if the wave length is large compared with the fiber radius,

o)l (e i S 3(op

Quyi ™ 23— ;) I and
kz (Uz 11.“24_1] ( ) { )
A M 2
s am _~i(6,-¢;) '
Ny HiCcye ™" Jn(0,)g R a (4.15)
i
M,

It is apparent that, judging from Equation 4.15, the ordd} tgirms is O(ka) in the quasi-static
case.

4.2.2 Multiple wave scattering

For a composite in which there d¥dibers embedded in the matrix, the effect of multiple
wave scatteringhould be considered. Theattering coefficient®mi and Bmi in Equation 4.9
and 4.10 for multiplecattering case are the same as in the single fiber scattering, excdptithat
terms should include the multipleadtering effects. Thu®r the multiple wave cattering case,

the displacement both in the matrix and in the fibers is
N

A LI T (4.16)
Uy, I <a

Introducing the stress and digpémenboundary conditions for all the fibers, we have,dach

fiber ‘I’

E

i =—"Fi
An D,

2| le (kla) |m90 n+1
mi 7'lk1aD + ZmEm Zﬁn| ‘J m)

Foi = glfaR cos(®i=00) jm _ —Z m ( i a> gmeo9) z B in'+lJnv(_ Wﬁi)
2mEm n'=1 '

- < Enn (6, -6o)
+y Y P H(k)

J# N=—oc0 Dm+ n

and

M20 (4.17)
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Do oi
_ 2 Ry, Y'(kd)
BOi rklaD t— 4E0 BL i (418)
F0| IklRCOS(¢I 60)_ZJO (kza)ﬁj,l | Z iEFnJ s (Iﬂﬁ)

4E0 J# N=—oc0 Dn
At this point, the general expression fat will not be derived as we did in Equati¢hi14) and
(4.15). Rather the exgtation values of,i are more useful for obtaining the edfive wave
properties for the composite systems, as will be shown in section 4.5.

4 .3 Statistical considerations

4.3.1 Random distribution of the fibers

As stated in EquatioB.13, the correlation probéity of the fibers (which is radomly
distributed in space) in a composite igiaction of three parameterse'n‘a’, and ‘s’ (again we
assign the number 0.1 for all the dynamic cases). For fiber-reinforced composites with interfacial
cracks, other parameters which in practice may affectdbhelation probatity include the half
crack length §) and the orientatiom. Yet for simplicity, we assume that all interfacial cracks
possess the same orientations and half crack length. A mathematical model to accommodate the
cracks distribution, if possible inlanited fashon, will be studied in the future. Theagistical
treatments areimilar to those in chapter 3. Again the definition tdtsstical notation and the
probalility Equations(2.41-2.45) in chapter 2iktapply for the appltation in this chapter. And
qguasi-crystalline approximation (2.40) will be used again.

4.3.2 Use of the properties of indistinguishability of fibers and quasi-crystalline approximation

Observing the third equation of (4.17) and that of (4.18)i's are functions of
themselves. They contain the multiple scattenmrfigrmation assoated with each fiber”, and
the geometrical information of all the fibers other than filver Therefore they are the terms on
which we perform the averaging procedures in order to obtain an ovessdtiedf material
property for the composite system. The rationale for performing the averaging process is based
on the fact that 1) all the fibers are indistinguish#tden a random point of view, atased in the
first two equations of (2.42); and 2) the multiptatering in the composite system is the dual
combination of the coherent waves and incoherent waves. Apparently, the averaging material
property is the overall edttive quantity due to the coherent waves. And the incoherent waves
are the non-constructive part of the multiptatsering waves in the composites. f@e the
averaging process, we follow the elasticity of materials to obtain the displacement fields in the
composites. After the averaging process, the contributions from the incoherent waves are lost in
the calculation of the effectiyaroperty of the composite. Hence, the visco-elasticity emerges as
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the end result to reflect the fact that part of the multiple scattering energy, i.e., thosaeai-the
coherent waves, is lost.

Due to the indistinguishability of the fibers, one cdoase any fiber to investte the
expectation value oFm. without loss of generality Thus, for fiber ‘1’,

E = eiklRlcos(q)l—eo)im IS a) |m (6g-¢ 1) ﬁ n+1 _ )
ml I’ll n
2mEm >
N o0 E

+2 Z Dm+n o (k1r1]) n(61-60) mz0

J=2Nn=-c =m+n

F01 — eik1R1005(‘D1‘ o) _ ZJO (kz @
4E,

+ A En F H ( ) in(eli_eo)

;nzzma n,j''n I(1rlj e .
By using Equation 2.41-2.42, the correlation proligb defined in the ‘well-stirred’
approximation (Equation 3.13), the quasi-crifistaa approximation (Equation 2.40) and
considering a large sample (i.e. the number of fibasslarge),[Fm1ld become

ik;R;coq @1-0¢) :m Z‘Jm' im(6 o ad N+
(), = €liRacod®i00)] _—Zm(éa)e (0 ¢1)n2:1<ﬁn’1>1| LJ.(-mao,) +

(4.19)
Bll 1

w 2a-1, . )
Ny Z h J‘ (1_ € %a/rb) J< I:n+m,2>2 Hn( |<1r12)eln(912_90) or 2 mz 0
n=-c “m+n |§_H|22a
(4.20)
ik R co 1=6o Z'J kZ
© 2a-nh
Yy = (1— e Jamr ]< o), Ha(k,) € dr,

n=-oo n |E_H|22a

4.4 Extinction theory

The extinction theorem states that the incident wave vanigpes entering the
composite [35], or that the incident wave is canceled by wavesagedeat thdooundary [31].
By applying this theorem, we appeal to the physics, not the mathematics, of Equation (4.20).
The setup of the boundary value problems and the solutions of thacdis@nt fields are for
obtaining the multiple scatteringhformation inherited by the presence of the fibers and
interfacial cracks. Once the scatterifggmula is established (Equations 4.17 and 4.18),
statistical-averagingrocedures need to be introduced (Equations 4.19 and 4.20) to obtain the
overall effectiveproperty of the composite system. By applying the extinction theorem, the
energy of incident waves is assumed to be ‘transformed’ intacHteesng waves in the system
and all the scattering waves traveling to the infibbeindary of the system are canceled by the
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incident wave. Thus in Equation (4.20) the quantities assmtiwith the infiniteboundary of

the composite, i.e. the upplanit of the integral term on the right hand side of both equations,

are canceled by the incident wave. Finally by assuming the existence of an average wave such
that (F,;). =i"F,e""*4*~% whereK represents the overall effective wave number in the

composite system, Equation (4.20) becomes

.m iKRy cog ®1-6¢ -zJ, im(9o— ad N+

| FmeKR {@1760) D—Jm(l&ae (® ¢])2<Bn,1>l| 1\1.(_I’T'51)+
n=1

2mE,
e e LSl i e i)
9 3k ) rlzdnz],m# 0 (4.21)
e g 2 515
a5 Bl et )

2a-fy
Loa e(a/no)s‘ ‘J“( KEZ) Hn( k1r12) rlzdr;Lz].

4.5 Construction of the linear system of equations

4.5.1 Asymptotic analyses

Asymptotic analyses are needed if Equation (4.21) is to be mathematically manageable.
Thus we resort to the fact th&by wave lengths large compared to the radius of the fibers (low
frequencies waves, orak- € (a small number), i=1,2), the Bessel functions can be appatedmn
as quantities with power order ok Therefore by asymptotic approximations of the Bessel
functions and Equation (4.21), and assuming that the order of magnitude 8 teems are
B~O(kia), then the order of magnitude of F's becomes(Rkia) ! and F~O(kia)™. The
statistical average d¥ terms in Equation 4.21 can be obtained by using boundary conditions
which require that the stress on the crack face of each fiber be vanishedforTigs multiple
scattering case we use Equatibt3 (with i’ substitute with ‘1’) as the boundary conditions for
vanished stress on the interfacial crack. Bear in mind that for the muttgiering case, the
F's terms in 4.13 are referred to as in Equations 4.19. By performing the low frequencies
analyses on Equation 4.13 for the multigdatsering case and considering trder of magnitude
of theF’s terms (F~O(kia) ' and F~O(kia) ™), we get
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Z Z p5 )'J Fﬁi)inﬂ((_l)m +(_:D n)ﬁn,i

n=1 p=1
/,l —ll e \J a +M _ipg —ipa
S L 12 ( )(kl )(( )p er F_pi_ep E)i)
Mt 52 P! 2

Note that in obtaining (4.220=80-¢i (defined as the transversely anisotropi@clion) and the
first term on the left and right hand side of Equation 4.13 areectegl. Equatiof4.22) can be

rewritten as [ani]{ﬁn + ={Nmi} where

Qmm: n+1[ 1) + ]z Fﬁl)

Nm,i=4'u2_'ulz ( (klaj [( 1p+m jpa £ ‘_elpa F]
Mt = P
Take the conditionaltatistical average of thebave equation and consider thact that

(Fy). =iPFe ™% yields

T T S

p=1 \ m=1

(4.22)

(4.23)

] (4.24)
o Yo | F iKR; coq @, -6, ) p1
5[5 amee]f (k3
where
-1
[Qnm,i] = [an i]
_ KT Ky Jm(péi) _1\P*m Jpa
me_4u2+u1 L (-1)"™e (4.25)
- J 0. )
Ymp:4l-12 lJl m(ppl)(_l)e—lpa.
o+, pi2

It will be beneficial, as will be seeatkr, to transform the’s terms in Equation 4.24 to a new set
of quantities. That is, let

IEO = Fox(kla)~ qiﬁa)t

Fp = pr(kla)p - qKa)t
Fo=F,x(ka)’~ kg

(4.26)

Note that p’ in the above equation is a positive integer. Thus the order of magnitude Bfsthe
terms are asymptotically the same and (4.24) becomes
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=3[ amt e

p=1\m=1

5[5 PRV k4

p=1 \ m=1
Finally substituting (4.27) to (4.21) and consider the low frequeiicigswe get a homogeneous
linear equations irF’s. Thus for nz2,

F_m B PR qnm',ixm' | F._+
1)'[“_2‘1j RN PAPS I

(4.27)

(m -

_ (4.28)
F_m = —Ze | ﬁzm—lz {z (Z qnm',ixm'pji_pF_—p +
(m—1)!(&-1J K, o |2\
M

00

[z o, Yo j pF} "3,(ms,)(-1)"

In obtaining the above equation, the positive and negativevah ‘the first equation of (4.21)
need to be considered separately. Also, in obtai@i8) when a2, the second term of the
right hand side of both equations in (4.21) is neglectedmEet,

[uz )kzgg(;qm.xmp}”m )

H

- kl
cw K. 7i cu (K o 26" kof e " —
—CWwh R+ — || tTeub-7——=— i Yo, |1 o) |+
- K kl 5 Wwh (R ~ K [klj 5 U (& l) K Z(Zﬂq : ] 3(6)
B kl kl ul

e )kzzz(;wﬂ)'““” =0

n (4.29)

Form=0, the first term in the second equation of (4.21) is neglected, therefore
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Form=1,
Ze°

ﬁii{i%.xmp)i”"lprn(a,)(—D“ +
ul

n=1 m=1

0

cu ﬁz & ke . | ch K. 7i
—zl_(Kj (kj +—cul+ ( )&Z(g%.xﬂl} 5)(-D" |Fu+ —zl_(KJ k1+2cu>l Fo+
u

k

)

ren g Janc

uze )EKZZ[Z""Y pji“*"EJn(ai)(—l)”:
Fao_q | e
My

Note that in (4.29-4.31),
c=r@’n,
Py

1

= /H 4.32
1+H% (4.32)
1

K
0 aln)? K
ly zjzklae( " Jn(EX) H,(X)xdx n=0,1,2.

Theln terms in the above equation must have an order of magnitude equal to or less than O(1) in
order for the asymptotic analyses to be applicable. Thus Equations 4.28-4.31 form a
homogeneous linear equation systenfrinBy stipulating that the coefficients &f terms form a

linear matrix and that the determinant of the matrix is equalrtp #ee quantity oK/ki can be
evaluated.

(4.31)

U =—=-1
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4.5.2 Computational technique

By performing column and row operations (addition, saditon and multiplicatin) for
the elements of the determinant mentioned previously, a simple equation of the effective wave
numberK emerges:

2 a, a'lj

K a, &,
— | =1+cy +(cy+ cycy—= 4.33
(kij U+ (cy+ cy &J)an alj (4.33)

a, a,

The numerator of the right-hand side of the above equation is a &Bwit]l) ceterminant and
the denominator is a (2f8m) determinant. More specifically, tl@s in Equation 4.33 are all
sub-elements structures (see appendix E for the I@spf The overall effective wave numbiér
in Equation 4.33 is a complex number, i.e.,

K=ReK)+i ImK)
W . . . .
where Re(K):E. B is the overall effective shear wave phase speed in the composite. A

measurement of wave attenuation in the composite is the specific damping capacity, which is

defined as¥ = 47Tm )
ReK)

A Fortran program has been tten to peform the comptation of (K/k1)2 in (4.33).
Note that for the tatic case, therobalility correlation termsha vanishes. In this case the
normalized wave number (with resg to the materiaproperty of matrix) in (4.33) can be
transformed to obtain the normalized shear modulus (as in Equations 3.22 and 3.23). The double
summation in the computation of elementsasf (4.33) needs to be carried out for the same
number of terms (for our case, we geach summation 30 terms). Alfwr the Q's terms in
(4.23) to be definite, ten-thousand terms are used for the case where the crack length is larger
than 0.01 radians. For crack lengths less than or equal to 0.01 radians, we resort to the analytic
calculation in the following.

Whend is small < 0.01) the summation &'s terms in the first equation of (4.23) can
be rewritten as

5 3.(p3)3.(p3) _ pil In(Pd)Jn(pd)s

P=1 p po

Let 0-Ax, a differential form of x, then dx. The above summation then becomes
k J (x)J (X w

lim In(%) (%) ”(X)szj. —Jm(X)J”(X)dx : (4.34)

koo & X; 0 X

Using the Weber-Schafheitlin formula [86], the integral in (4.34) can be written as
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fio

2F(n+])FE(m— n+2

1

)} } F[—(n— m). L+ n+1),1} , (4.35)

2

wherel is the Gamma function arkdis the hypergeometric function
+ +1)2°
Fla,py.2)= {1+ 982, A DABAZ L (4.36)
1y 2ly(y +1)
Note thatF is one of the solutions of Gauss’s equation:

z(1- z)%+{y— z(a + B +j)}%—a,8y = 0, and that
_Tyrly-a-p
P ITy —ayry-p)

Using Equations (4.34), (4.35) and (4.37), we find that if the crack length is éall1 in our
program),

2 Jo(p0)I(P) _ Sy
pzzl p ~2n

(4.37)

(4.38)

For the dynamic case, where the frequencies of the incident wave are suah thdgss
than 0.1 in our program, an iterative scheme needs to be employshud® thdn terms of
Equation (4.32) are functions Kfki, Equation (4.33) cannot be solved explicitly. Hendamsilar
to chapter 3, an iterative method is used starting withthie ¥alue ofK/ki. By substituting the
static value oK/ki in the last equation of (4.32), initial valueslefare obtained. Then using
these initial values for (4.33), we can get the initial valueK8f. Following the same
procedures, converging valuestdki are then obtained.

4.6 Numerical results and discussions

In our program, we test the applidalp of a fiber-reinforced composite where the fibers
have stiffer shear modulus and lighter weight than the matrix(28€° Pa,12=8.08¢€°, p1=801
Kg/m3, P2=234.7 Kg/rﬁ). Two extreme debonded situations are when 1) there is no &k (
and 2) the fibers are totally debonded from the madrixi( regarded as the case that the space
originally occupied by the fibers is void). For these two extreme cases, the resultant
computational shearaduli from our program coincide with those obtained by Hashin and Rosen
[27]. Obviously, these two extreme cases render the composites as transversely isotropic
material systems. The composite systems become transverselyopigsathen the fibers are
partially bonded, as can be seen in Figures 18, 19, 20 and 21.
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Figure 18. Using normalized shear modulus as a function of anisotropati@ir to demonstrate
the transverse anisotropy properties for various cases of half crack length at 0.188 fiber vol.
fraction.
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Figure 19. Using normalized shear modulus as a function of anisotropati@ir to demonstrate
the transverse anisotropy properties for various cases of fiber aoliofr at 1/at half crack
length.
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Figure 20. Using normalized shear wave phase speed as a function of anisotempiondto

demonstrate the transverse amispy properties for various cases of half crack length at 0.188
fiber vol. fraction.
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Figure 21. Using specific damping capacity as a function of anisotropictidin to demonstrate
the transverse anisotropy properties for various cases of half crack length at 0.188 fiber vol.
fraction.

75



The computational quantities obtained, using Equddadi), are normalized wave numbers and

are generally complex. For normalized axially shear modulus irtdbie sase, the magnitude of

the imaginary part gfi/p1 ( obtained from the normalized wave numKét) is extremely small
compared to that of the real part. Hence for théicscase, the shearodulus is a real number

and it corresponds to the elasticity of the composite system. For the dynamic case, the
magnitude of the imaginary part &fk: is significant compared to that of the real part and it
corresponds to the energy dissipation of the composite systems. Ordygtiieat the calculated

shear moduli, the shear wave phase speeds and specific damping capacities are negative numbers
or extremely high in some ranges of half crack length conflict with the physics of the composite
systems (Figures 22, 23, 24 and 25). These ‘jJumps’ occur in some particular ranges of half crack
length for a variety of cases. As the conational results show, the increase of the number of
summation terms in our program does not change the resultant magnitudatedseith those

jumps (i.e., the summation terms are convergent). Therefore the mathenzatisabff these
‘anomalies’ are confirmed and those jumps are finite.

An interesting phenomenon of the transverse anisotropy of the composite system is that it
is less pronounced near three ranges of the half crack length. Two of them arecésdexear
0=0 andd=mt. The other one is near, surprisingwTV2 (Figures 18, 20, 21). The fiber volume
fraction ‘C’ also affects the transverse anisply of the composite system. As exped, the less
the fiber volume concentration, the less anisotropic is the system. These can be observed in
Figures 19 and 22 where if the fiber volume fraction is small, then the quantifytofvill be
near 1 and the function line will tend to be ‘flat’ and near 1.

76



N
o

N
T

Normalized shear modulus, “/“1
=
= (6]

o
[(6)]
T

I ) ) B O A |
0 1/2n b1
Half crack length, § (radians)

0

Figure 22. Normalized shear modulus as a function of half crack lengths for various cases of
fiber vol. fraction at zero anisaipic direction. Note the 'decreasing steps' fashion as the half
crack length increases. Also, the jumps occur near T1AG50T
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Figure 23. Normalized shear modulus as a function of half crack lengths for various cases of
anisotropic diection at0.188 fiber vol. faction. Note the 'decreasing steps' fashion as the half
crack length increases. Also, fo=1/21T, jumps occur near 19/8D39/50T For a=1/4p, jumps

occur near 11/509 19/50t, 31/50t, 39/50T Fora=0, jumps occur near 11/8031/50T
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Figure 24. Normalized shear wave phase speed as a function of half crack lengths for various
cases of anisotropic @iction at0.188 fiber vol. facton. The 'decreasing steps' fashion has the
same properties as those of the shear modulus. Note that 18T, jumps occur near 11/5)
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Another interesting phenomenon is about the decreasing step tendencies (as functions of
half crack length) of the normalized shear modulus and wave speed, as can be observed in
Figures 22, 23 and 24. Ferach step, th&unction lines are generally leveled before thegah
the jump area. This feature, however, cannot be found for the damping capacity as in Figure 25
where the minimum quantity of the damping capacity occurs at the middle step whetrelt/2
crack length locates. This means tloaita fiber-reinforced composite with interfacial cracks, the
composite system with Ifhalf crack length is the least attenuated (this fact can also be
observed in Figures 21, 30). Finally thedtions of the jumps do nobrrelte with the amunt
of fiber volume fraction (Figur@2). Rather, they are functions of anisotropiections (Figures
23, 24 and 25).

The influences of fiber volume fractionc{f on the normalized shear modulus have
different trends for different ranges of anisotropi@diion @) and half crack lengthd}, as can
be seen from Figures 19 and 22, exgjvely. Roughly speaking, there exist ‘critical pairs’ &f
anda that the quantity ofi/l1 stays approximtely constanfor any € (as long asc’ is low -
€<0.25 is sufficient for our case). More specifically, in Figure 22, a normalized shear modulus of
approximate magnitude of 1 exists whe0 andd is near 28/50. This means that the shear
stiffness of a composite system, with zero anisotrop&ction and®[28/50T, stays constant for
any fiber volume fraction i€<0.25. Two other critical pairs of andd exist in the ‘jump area’
where different constant quantities |of11 exist. Similarly in Figurel9, two critical pairs o
anda (0=1/4m, o nearl12/5@ or 38/507) render a normalized shear modulus of appraserdy
0.94 for 0.075c<0.25. These ‘critical pair’ phenomena can also be seen in Figures 26 and 27. In
Figure 26, the influence of ‘c’ op/Hs1 is in an inverse fashion fer=0 curve and not fon=1/6rt
curve. Therefore we predict that, given a known half-crack length of iif8re exists am
between 0 and 1r6where the magnitude of the fiber volume fractjfor c<0.25, at least) does
not have any influence on the stiffness of the compositeila8y in Figure27, there exists &
between 1/& and 1/3twhere the change of ‘c’ (fo0.25) does not adict the shear $tiness of
the composite. For dynamic mechanical properties, Figure 28 shows that the higher the fiber
volume fraction (we fix the magnitude of the fiber radius and vary the number of fibers per unit
cross sectional area) the more damping of the composite and the faster the shear wave phase
speed. Figure 29 shows that, given a fixed half crack length, the shear wave phase speeds are
roughly the same for various anisotropicediion and the change of damping capacity as a
function ofa is an inverse relationship whés1/8m. In Figure 30, the change of the wave
speeds, given a fixed anisotropicedition ofa=0, also show the ‘decreasing step’ fashion as a
function of the half crack length. Also in Figure 30, the damping capacity has the lowest quantity
in the middle section od (whered is near 1/8, this reflects the same trends as in Figefbg.
Finally, from Figures 28, 29 and 30, the influence of frequencies (low frequencies such that
kia<0.1) on the wave speeds is non-existent, while it is significant on the damping capacity.
Therefore the composite system is non-dispersive and highly visco-elastic in the low frequencies
range.
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4.7 Summary

An ensemble-average statistical el is used to calcale the overall effective
mechanical properties of fiber-reinforced composites with interfacial cracks. Specifically cracks
are the fiber-matrix interfacial cracks which occur during the naatufing process or are from
inherent material defects. Tipeoblem starts with the establishment of the Helmholtz equations
and boundary conditions followed by a full scale solution of the multga¢texring equations.

Then by considering the low frequencies limit and thgistics of radomly spatial distribution of
the fibers, a manageable homogeneous linear matrix equation is obtained. In a homogenized
point of view the macroscopic mechanical properties of the composite system are derived. The
calculated average mechaniqabperties include the overall efftive shear wdulus |, the
average shear wave phase sp&dand the average specific damping capa8tyof the
composite system. The shear modulus corresponds to the elasticity tdtihetate, while the
shear wave phase speed and damping capacity correspond to the visco-elasticity of the dynamic
state of the composite. The results show that, among others:
1. the fiber-reinforced composites with interfacial cracks are transversely anisotadpicam
systems possessing visco-elastic behavior;
2. as the half crack lengt®)(increases, the axial shear modulus of the composite is in a
‘decreasing steps’ fashion for which finite numerical jumps exist between those steps;
3. for a fiber-reinforced composite with interfacial cracks, the composite system withdlf2
crack length is the least attenuated and is nearly transversely isotropic;
4. the composite is a non-dispersed material system in low frequency range.
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CHAPTER 5. CONCLUSIONS

Elastic multiple wave scatteripgoblems in time independerteady state andition can
be treated by either the mabodies-single-event approach or the consecutive-events approach.
These two approaches have been proven mathematically equivalent in the second chapter.
Twersky [52-56] has discussed the same principle, though in problenectrbalagnetic nature.
In our study, the ap@ations of both pproaches have found their use in appaiprisituations.
While the quasi-crystallinepgroximation is shown valid in a consecutive-events viewpoint, the
effective global materigdroperties of composites can be deduced in an approach combining the
many-bodies-single-event anthsstical melhods. Only in the discussion of the extinction cross-
section do we demonstrate sonmited physical properties at high frequency (Figure 7).
Asymptotic low frequency analyses are essential in solving the boundary value problems and
render the equations mathematically manageable, though the wave functionsat@mil m
properties thus obtained are only satisfied in the Rayleigh (low frequdinity) Asymptotic
analyses in the Rayleigh limit have yielded definitive redutimm which the physical trends of
the fiber-reinforced composites can be samedl. From the consecutive-events viewpoint, a

2

diminishing factor ofz—ﬁ%ﬁlg for the extinction crossestionfor the closest arrangement
2 1

of a two-fibers system is obtained. This can be regarded as a baseline in dealing with the question

of whether the effects of higherder €attering need to be taken into auant in the case of a

dense distribution of fibers. A rough criterion for which the distribution of fibers needs to be

considered as ‘dense’ is whether the higher ordettering effect of the closest two fibers need

to be taken into account.

Using the many-bodies-single-event approach and employiagsteal mehods,
effective materiaproperties (axial shear modulus, axial shear wave phase speed and shear wave
attenuaton) of composite systems can be caltedlfrom Equations 3.21 (for composites with
multiple interfacial layers) and 4.33 (for composites with interfacial cracks). For both cases, the
modeling has been carried out in straightforward yet rigorous mathemateztinénts.
Computational resultfor extreme cases are eqiantly reduced to the classicrmula
obtained by previous researchers. More specifically, normalized shear moduli obtained from
Equations 3.21 (when there is no interfacial layers) and 4.33 (when half crack defggnd
o=1) reduce to the classical formula in Hashin and Rosen [27]. The main purposes of Equations
3.21 (fiber-reinforced composites with interfacial layers) and 4.33 (fiber-reinforced composites
with interfacial cracks) are to predict the dynamic properties of fiber-reinforced composites.
Both categories of composite systemsrara-dispersive (wave phase speed not being a function
of frequencies) yet highly visco-elastic (attenuation of waves) in low frequencies réres (

0.1 for our analyses). For composite systems with elastic interfacial layesasteheation is less
for those with a more linear and smoothed transition atenalproperties of layers (Figures 14-
16).
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For composites with interfacial cracks, as expected, the computational results
demonstrate somphysical trends yet predict unforeseen results in our cases. Properties of
transverse anisotropy are well demoatgtdfor composites systems with partially bonded fibers,
and transverse isotropy is confirmed with extreme situations (when fiber volacterfr T
becomes small as in Figure 19, or when the half crack lengthOisor d=11). Surprisingly, the
computations predict the transversenspy of the naterial system when the half crack length is
near 1/2t (Figures 18, 20 and 21Jhe stiffness of the composites (shear moduluss the half
crack length increases, is decreasing in a step-by-step fashion frotatthefsperfecbonding
(0=0) to the state of totally #ending §=m). For each individual step, the quantity |ofis
generally leveled until it reaches the jump oegiTherefore, in general, the model predicts the
weakening of the shear stiffness of the composite as the half crack length grows in spite of the
fact that there exists the ‘jump anomalies’ (Figue@s24). The wave speeds exhibit the same
general trend as the shear moduli do. The damping capacity, generally, has the lowest quantity
when half crack length is ne®=1/2r. The total debonding case has a higher quantity of
damping capacity than the perfdodnding case (Figure 25). Finally for small fiber volume
fraction €<0.25), there exist critical pairs of anisotropicediion ¢) and half crack lengthdj
that the change @fdoes not influence the magnitude of axially shear modulus of the composite.
These critical pairs have not been systematically located; we will do so in the near future.

In retrospectour model does not claim to be quésatively precise in predicting the
behavior of a composite system, as the finite nhumerical jumps of the normalized shear moduli
clearly show (Figures 22-25). But more importantly, the general trends of theatadcstrength
and dynamic properties are what we can takeantmunt in designing or ingpting a composite
material system. The analydes composites with interfacial layers would certainly be extended
to layers with very low modulus. In this case, a fiber-reinforced composite with totally debonded
fibers can be simulated and the results can be compared with the interfacial cracks case in
Chapter 4. Finally the visco-elastic effect of the ffibeinforced composites is only due to the
non-constructive (energycattering by the fibers) wave scattering when waveswner with
the fibers. Throughout the analyses, the fibers and the madtesial are considered as elastic.

The visco-elastic material property is resulted from the statistical consideration.
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APPENDIX
Appendix A

In the Rayleigh limit [87], i.e. in the low frequency limk&is small. That is, dsa—¢€
2
3(ka) - 1- &3

. ka
J(ka - ——
(k) - =

Y,(ka) - 7—2_[(In katy —In2)

- 2
Y,(ka) - —
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mi\ 2

Tn(k3) (mfl)!%(k_;)m_l

k) - = (4] 2]

2 m E

: 1 ka\™™ . m! [ 2\"
H (ka) - — +i——| —

n(ka) 2(m—1)!( 2) kan( ka) (AL)
wherey is the Euler constant ang-0.5772156649..., B1. From the above, we get
E, - Q)

D, - O(e) +iO(e™)

= - io(s?)

Em . q£2m—1) (AZ)
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D—”‘ ~ i0(&7™)
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In the optical limit, i.e. in the high frequency link& is large. That is, d&— « and nz0

ka \/; co §m+ 1@—5

Jn(ka) - - 2nli3a3 cos%a— §m+% ;E Tdia sn@«a @m 1@— (A3)
1

. O 1 . g 0 1Ond
Ha(ka) ~ b -2 Do a- i 20T
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Appendix B

We list the first five orders of scattering coefficients:

) . ) ) E
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Appendix C

[A] is a (2n+2¥(2n+2) matrix which can be represented as

- J(ka)  -3(ka) - H(ka
HoKodr (koao) _l'llki‘y( Ka)) —H.K "nl:( K%
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{B} is a (2n+2) vector
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[Ad] is a(2n+Dx(2n+1) matrix
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[A2] is a(2n+2x(2n+2) matrix
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Appendix D

The generating function of Chebyshev polynomial [87] is defined as
T+ (=[x - %) wm o)

where
T.(X) = X ‘(;]Xn_z(l— X?) + EZJXM(l— xz)2 — M
Ve (%)= ¥1= 5 U, (¥ 02)

sy

Tn(X) is the Chebyshev function of type | ade(X) is the Chebychev function of type Il. Rewrite
Vn(X) as

= \/1—)8%@(” ' HsE?(" 3(1— x2) + @@(”5(1— x2)2 -

Note that forx-»il,Vn(x)—»O%/l—(l— 8)2 % i.e., Vn(X) - o%%%as X approachl.

Let x=cof in equation (D1), then

T,(X)+ V(¥ = €.

Consequently,
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Furthermore, le6=mw2-a . Thusx=cosf=cos@v2-a)=sina . Accordingly
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V,(x) =sinrb = smr(% 0()- su( 1}/2 n sin x) n=1,2,3... (D5)

The following formulae are used to perform integration involving Chebychev function:
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The integration of Chebychev function is performed as the following
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Summarily, the integration of Chebychev function is
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Appendix E
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