1. User interfaces for 3D visualizaiton

Deborah Hix

Given the availability of suitable hardware, the primary barrier to effective 3D visualization is a well designed user interface. Developing user interfaces to portray large quantities of information is rapidly becoming one of the most challenging areas of computer systems. Across all sectors of our society -- private, industrial, military, government -- the need to manipulate the ever-increasing volume of data is growing rapidly. The primary objective of our research is to dramatically improve the methods used for manipulating and visualizing vast quantities of data, especially in 3D environments. VR-based systems as the CAVE are strikingly different from the current defacto standard GUIs (graphical user interfaces) that run on desktop workstations. But there have been very few new techniques developed for users, who develop on desktop workstations, to interact with CAVEs and other 3D virtual environments in a way that is most appropriate for those environments. In fact, all too often in a virtual environment, there is a fundamental mismatch between what a device is suited for versus what it is actually being used for. Clearly the CAVE is a superior 3D visualization environment when compared to traditional desktop workstations, but desktop workstations are where engineers and scientist first visualize their data, hence linking this two environments would be of obvious benefit. Both input and output need to be studied, and techniques for enhanced user control in these environments developed and evaluated. New input technologies such as eye gaze, foot-based input, and of course speech, may offer improved interaction for both the desktop and CAVE environments. For output, such effects as haptic (tactile/pressure) and auditory feedback need to be studied. These new techniques for user control need a close coupling of input and output in order to simulate the real world (as much as is desirable and/or possible).

Human-computer interface (HCI) work in this project will be user centered. This means that the work proposed in this section will not be based not on what software or interaction techniques are already available or are easiest to code as in section 2, but rather on what tasks users want and need to perform in order to access, manipulate, and understand large amounts of data, particularly in virtual environments such as the CAVE. These user-based needs will then serve as requirements for creating supporting software for novel interaction techniques that offer an appropriate match of technique and device to user goals and tasks. Hopefully the results of this study will also provide insight into how to improve the desktop workstation environment. The full potential of promising interactive technologies can be realized only when users can easily communicate with such systems. The result of our proposed HCI research will be measurably (and documentability) improved user interfaces for visualization and control of multi-dimensional information, in terms of both functionality and usability for the user.