
Visualization Development Environments 2000 Proceedings

1

Interactive Scientific Visual Data Analysis using Java, PV-Wave, and
IMSL

Ronald D. Kriz1, Randy T. Levensalor2, and Sanjiv D. Parikh3

Virginia Polytechnic Institute and State University

1 Associate Professor, Dept. Engineering Science and Mechanics, Norris Hall, Blacksburg, VA 24061, rkriz@vt.edu
2 Graduate Research Associate, Dept. Computer Science, McBryde Hall, Blacksburg, VA 24061, randyl@vt.edu
3 Graduate Research Associate, Dept. Engineering Science and Mechanics, Norris Hall, Blacksburg, VA 24061, engineer@vt.edu

Abstract

A Java framework is described for creating an interface
with legacy code through a Web browser. This interface
was created in the development of modules for teaching
courses on the Mechanical Behavior of Materials. Modules
incorporate the results of state of the art simulation
techniques. When appropriate, students studied structure
property relationships predicted by simulations in an
immersive CAVETM environment. Simulation results span
various length scales that start at the atomistic level that
use embedded atom method techniques, and continues with
simulations at the continuum level that use finite element
method techniques. These modules used legacy code
written by the researchers teaching these classes.
Considerable attention was focused on creating a Web-
based interface that allowed researchers to easily
construct, and students to easily use, interfaces that access
legacy code in an interactive format. Hence when possible
commercial software such as JWave was used, but when
working with supercomputing simulations a Java based
three-tiered architecture called Network Programming
Interface Builder (NPIB) was needed to communicate
between the clients, the Java server, and remote site
supercomputers running the legacy code.

1. Background

Modules were developed and distributed on our SUN-
VNI Wave-Java server, [Kriz, 1995]. Early efforts to create
a distributed, Web-based, visual computing environment
were funded by SUN Microsystems, Visual Numerics Inc.
(VNI) and Virginia Tech's Advanced Communications and
Information Technology Center (ACITC) by the creation of
the Scientific Modeling and Visualization Classroom
(SMVC). Modules discussed here were largely motivated
by a student project, "Educational Atomic Models Using
PV-Wave and Java" by Arturo Falck, in ESM4714:
Scientific Visual Data Analysis and Multimedia, spring
semester 1996, [Kriz, 1991]. The purpose of this project
was to create a user-friendly Web-based interface to interact
with larger computer simulation models of cracks and
dislocations in crystal lattices by using a Web-based
interface.

 Interactive Web-based forms were created that students
used to: 1) enter information required by the simulation, 2)
compile that information into a data file, 3) submit this file

as a batch job to a remote supercomputer, and finally to 4)
send raw data of simulation back to server where images of
data were generated for viewing and then transferred back to
the remote-site client. Unique to this project was the level
of industrial participation by SUN Microsystems and
Visual Numerics in the creation of the Java Web-based
interface, see [Kriz, 1997]. Early Java prototypes developed
at Virginia Tech have been replaced with JWave interfaces
developed by Visual Numerics except for the Network
Programming Interface Builder (NPIB), which has replaced
the original Web-based Java framework, but the same
functionality has been maintained. A more detailed
discussion on NPIB and JWave follows.

Development of the Java-Web server continued with
additional funding from the NSF Combined Research and
Curriculum Development (CRCD) Program. With NSF
funding the server was upgraded to a SUN Sparc10 Ultra
with 1Gigabyte of memory that could be used to handle
larger simulations which could then be used to generate
more representative results for analysis by students. The
earlier version of NPIB that links students at their personal
computers to remote-site supercomputers was created
entirely with Java. Hence this open-source Java-Web server
could be implemented at other universities using standard
Java based technology on affordable UNIX, NT, or Linux
servers. For this project two SUN Sparc10 Ultra were
selected for development, since it represented an entry-level
system that most departments can afford.

 The first course was organized on the Web server with
hyperlinks to Web modules that were divided into lectures,
assignments, and examples, [Kriz, 1997]. The first course
focused on atomistic and continuum mechanics models and
the second course will focus on models that predict
mechanical behavior at the scale between the atomistic and
continuum. Details on module content development of the
first course were published in [Kriz, 1999]. Here we
describe the development of the Web-based Java framework
and explain how the graphical user interface (GUI) was
designed and facilitated students in their efforts to
parametrically study the relationships modeled and
simulated by computer program written by the researchers
and instructors.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

2

2. Development with JWave and NPIB

2.1 JWave

Figure 1 shows the interactive JWave applet GUI. This
GUI form allows the student to fill in a few parameters,
select a color from the pull down menu, and toggle a
switch. Once the form is filled out and the update plot
button is pressed, the applet will set all the parameters and
make an execute call to the PV-Wave procedure. The
procedure will analyze the data and generate a graphical
plot corresponding to the input data and then send it back
to be displayed in the HTML form. Two files are required
to make this happen, the JWave applet embedded in a
HTML document and the PV-Wave procedure file located
on the server.

Figure 1: Thick Walled Cylinder: (a) JWave 2.0 form with
window showing graphical result

 A JWave 2.0 applet was developed following a few
simple easy-to-follow steps. These steps were to install the
Visual Numerics Inc. (VNI) JWave 2.0 on our SUN-VNI
Sparc10 Ultra server (with VNI's PV-Wave preinstalled),
run the JWave server manager to configure the paths and
directory structure for accessing java archive (jar) files.
These files contain all of the classes required by

Figure 1: Thick Walled Cylinder: (b) problem definition.

the JWave server and create javascript embedded HTML
forms which act as the GUI interface for the data input to
and the graphical output from PV-Wave procedures.

The major part of time involved in developing a JWave
applet went into understanding how the javascript/JWave
applet communicated with PV-Wave. This is done through
JWave wrappers. JWave wrappers are VNI's in-house java
functions that are archived into the JWave<type>.jar files.
These functions are used within the embedded javascript to
call and execute specific PV-Wave commands. The
following is an example of how data is passed from the
applet to a PV-Wave procedure. Here 'setNamedColorSet'
would be used in the applet to set a specific color for an
object and 'GET_NAMED_COLOR' would be used in the
PV-Wave procedure to return the color for that graphical
object being generated via the PV-Wave procedure. There
are a variety of these wrapper functions within JWave that
allow the ease of coding simple yet effective HTML forms
which access PV-Wave's massive data analysis and
visualization toolkit.

 Beyond the JWave wrapper API, one only needs to be
able to pick up basic javascript and the PV-Wave
programming language. JWave was specifically designed to
work with legacy PV-Wave procedure files. To generate
web-based forms with text fields, buttons, check boxes,

Visualization Development Environments 2000 Proceedings

3

pull-down menus, etc., a basic understanding of the simple
javascript GUI generation is sufficient. The following
source code is a sample HTML (javascript) code used to
generate a text input field and return its value to the JWave
applet's setparameter function (which will for this case sets
the value for the variable 'r1' to user's input):

Please enter the inner Radius (r1) in inches:
<INPUT TYPE=TEXT NAME=r1 VALUE=2
 SIZE=5
 MAXLENGTH=5
 onChange=ÓdataNeedsRecalc=trueÓ>

...

setFormParam(twcplot3, JWavePlotForm.r1);
...

 The following is the corresponding code for the PV-
Wave procedure, which will get the 'r1' variable's value and
incorporate it into the analysis of the procedure.

function TWC3, client_data
...
p(3) = getParam(client_data, 'r1', /Value, Default = 2)

...

 Due to the simplicity of coding these objects in
javascript and being a part of the HTML form, the only
coding needed is the creation of a single HTML/javascript
file. To make learning this task easier, VNI created a few
demonstration JWave applets which have the buttons /
pull-down / input fields pre-coded into the HTML forms.
With a basic understanding of the outline of the applet, it
is easy to generate web-based interactive data analysis and
visualization toolkits via few modifications to VNI's
JWave applet demos and existing PV-Wave procedures.

The applets developed here were JWave version 2.0
applets, however JWave 3.0 is just recently introduced.
JWave 3.0 is a newer version of the JWave server, this
version is much like JWave 2.0 in its ease of use and
carries over all of the functionality with added new features,
such as its' two way communication between the applet
and the procedure and back to the applet.

 To aide in development of future JWave applets, a Web
page with links to download the JWave software,
download the sample demos, and download the tutorials as
well as the JWave user's guide was setup on our website.

2.2 NPI

 From the start NPIB has been designed as a simple
intermediary between students and complex legacy
engineering programs. Use of existing tools, platform
independence, and minimal system administration are
major themes, which guided the development cycle. Java
using Sun's JDK 1.1 was chosen as the primary

development platform. JDK 1.1 runs on all major server
platforms from PCs and Macintoshes to UNIX servers.

 NPIB can be divided into six distinct phases:1)
Creation, 2) Form Display, 3)Data Delivery, 4)Local
Execution, 5) Remote Execution, and 6) Results Delivery.

Figure 2: (a) NPIB (Network Programming Interface
Builder) version 1.0 of the fourth order stiffness tensor

2.2.1 Creation

 Form creation encompassed the majority of the
development time. Teachers create the forms, which will
collect the data from the students. The look and feel of the
forms and the format of the files outputted are decided at
this phase. An earlier attempt used a single GUI to view
for arranging both the layout of the form and format the
output. This approach was cumbersome and inflexible.
Another attempt used a language to describe the layout of
the forms and the output, see Figure 2. This gave the

VDE 2000, Princeton, New Jersey, April 27-28, 2000

4

Figure 2: (b) Text file showing syntax that was used to
create the NPIB form shown in Figure 1(a).

Figure 3: Example of results returned as a navigable
VRML viewer embedded in browser showing the
intermediate QT wave surface corresponding to the density
and stiffness tensor tabulated in Figure 2(a) and 2(b),
[Ledbetter, 1982]

teachers the most flexibility and control. Due to the strict
control of this language, modifying these forms was
laborious task. Since a unique language was implemented
there was a large learning curve associated with this
method.

The current method incorporates the strong points from the
previous designs while attempting to eliminate their major
drawbacks. A GUI is used to layout the forms through a
WYSIWIG approach, see Figure 4a. Teachers were able to
directly manipulate the form components and view them,
as the students will. Properties for the specific form
elements are adjusted by changing values in a dialog

Figure 4: NPIB form version 2.0: (a) "AWTapp" direct
manipulation window for creating form by teachers. Same
as final Web-based form as viewed by the student, see
Figure 5.

similar to Java Beans [Sun], see Figure 4b. The output
is formatted using a simpler and more intuitive language,
see Figure 4c.

 At present no formal usability tests have been conducted
to verify these claims. However, direct feedback from all
users indicates that the goals laid out for the final approach
have been satisfactorily achieved.

2.2.2 Form Display:

 This displays the forms created by the teachers, see
Figure 5. The viewer is a striped down version of the
builder. It is viewed as an applet using a standard web
browser. This approach was chosen because of the wide
availability of web browsers for students.

Visualization Development Environments 2000 Proceedings

5

2.2.3 Data Delivery:

 Deliver the data from the students to be processed on the
server. The data is submitted to the server via a socket.
Before the data is sent, it is broken into formatted files.
The server receives the text and dumps into the appropriate
files with the names specified from the form. The server,
which receives this data, is written in java for platform
independence.

2.2.4 Local Execution:

 Since several methods are in place to execute programs
no additional programs were created to aid in the actual
execution of the programs. Current implementations use
basic shell scripts, which mirror commands as they would
by typed if being run manually. The location of the data
files and parameters passed from the form are passed as
command line parameters in a script file. Others methods
of execution can be used including c, c++, fortran, perl or
any other executable may be used to invoke the programs.

Figure 4: NPIB form version 2.0: (b) "Properties" of NPIB
components are assigned here.

2.2.5 Remote execution:

 Initially instances of the receiver were run on machines
other than the web server to execute programs remotely.

Figure 4: NPIB from version 2.0: (c) "Output Editor"
controls from format of the output.

This caused several complications at the implementation
level, exercise level, and administrative level. This
required the receiver be installed and always running on
any machine these programs need to run on. Finally, we
looked to existing tools as in the local execution and found
several solutions. The preferred method is the use
ÒexpectÓ script and secure shell (ssh) to move files and
execute remote programs.

2.2.6 Results Display:

 Final results are returned to the students in two forms.
First an additional web browser is opened displaying the
directory where the results will be located. This provided
the students with a means of acquiring the status of the
current executions and gives them the results when the
simulation is completed, see Figure 6. The second
approach is the URL of the results is sent to the students
via e-mail. This also provides the students with an archive
of the location of the results.

3. Results and Lessons Learned

 The first NSF-CRCD course was taught in the Fall
semester, 1998 and a second class will be taught this Fall
Semester, 2000. Both classes are three-credit hour classes,
which meet for one hour three times a week: Monday,
Wednesday, and Friday. Mondays and Wednesdays was
reserved for lectures and on Fridays students met with
instructors in the Scientific Modeling and Visualization
Classroom (SMVC) of the ACITC.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

6

Figure 5. NPIB form used by students to submit batch job.

3.1 Things that worked well

 Except for the occasional server downtimes, the NPIB
and JWave interfaces worked well. Until the final
evaluation is completed, conclusions are speculative. From
first impressions however, it appeared that the most
productive time spent using these modules was when
students and instructors met in the SMVC on Fridays.
Fridays were more like lab sessions where students could
ask questions and try out their ideas with comments from
the professors who also helped interpret the simulation
results. Instructors also received valuable feedback on how
the Jwave and NPIB forms were working and what

Figure 6: Simulation results of NIPB form shown in
Figure 5 returned in embedded VRML Web viewer.

was needed to be improved. Friday sessions also built
student confidence for successful completion of their
homework assignments.

3.2 Things that need more work

 Although the NPIB form worked well, the "builder" part
of the NPIB was improved with more features but was not
stable enough for the instructors to build their own forms.
Consequently the technical support team members built all
the NPIB version 1.0 forms using a scripting syntax. NPIB
version 2.0 allows the instructor, who is not Java literate,
more freedom in building interactive NPIB forms. At first
the NPIB form only worked on the UNIX workstations
with Netscape 4.5. Only near the end of the semester did
we get the NPIB forms to work on Windows-NT. This
was largely due to the way Windows-NT handles screen
refresh.

3.3 Lessons Learned

 Java interface development is a difficult, if not an
impossible task, for most professors who do not have
backgrounds in computer science. Even using javascript
with HTML is beyond the abilities of most professors.
These same professors are also not capable of routine
systems administration needed for configuring and
maintaining Java-Web servers. Hence there must be a

Visualization Development Environments 2000 Proceedings

7

commitment from the department or college to support a
courseware server and train professors on how to access and
use systems such as the NPIB. Because of limited
resources and reluctance to accept new technology, building
and supporting courseware servers has been the most
difficult aspect of this project. The Java-Wave server is
presently maintained by the Problem Solving Environment
(PSE) group in the Department of Computer Science,
[Shaffer, 99].

 In this class we also discovered that programmers and
system administrators need to work more closely than in
years past where typically all that was needed was to install
a standard language compiler, with user service group to
answer any questions. With the advent of the network,
professors and technical support staff can no longer afford to
isolate themselves in the "new world" of computing where
popular Web-based software applications are constantly
changing. Successful projects now require that professors
devote more time learning computing skills and how to
work more closely in teams. We also experienced first hand
how Java needs to be maintained as a standard: early
interfaces developed in Netscapes' IFC had to be rewritten.
Our experience in team teaching this class was a rewarding
but difficult task. More time was spent solving technical
problems than was spent developing course content. We
hope this trend reverses in the next class because of the
tools already developed and experience gained in the first
class.

 To continue the learning experience, witnessed on
Fridays in the SMVC, students need access to the Java-
Web server from outside the SMVC. Although convenient
to manage, students should not be required to go to any
particular workstation classroom environment. Some
universities, because of security issues and convenience of
management, prefer to isolate these resources from remote
access. Such policies are counterproductive when every
student is also required to own his/her own personal
computer and where professors who are located off-site, are
expected to create courseware materials but cannot do so
remotely.

3.4 Future Developments

 Another course will be taught in the Fall semester, 2000
at a first year graduate level. The Java-Web server will be
upgraded to JWave 3.0, better security measures will be
implemented without restricting access to the anonymous
ftp site, and the NPIB builder feature will be completed in
version 3.0 so that professors can build their own Java
forms. We hope to deploy NPIB3.0 and JWave3.0 on an
NT server in the near future. Other ideas for future
development are: 1) validate and verify data before they are
submitted to server to check for data types: int, floats, etc.,
and 2) auto-generate NPIB forms given a specific input file
(work with existing legacy data files). Although our
current Sparc10 Ultra server has been upgraded to 1GB of
memory with 27GB of disk space, we hope to access a Sun
Enterprise 6500 computer with seventeen 400MHz (8MB
cache) processors, 18GB memory, and 144GB of RAID

disk as a remote-site computer for the larger simulations.
Modules in the Fall 2000 class will be extensible to other
classes taught in the Engineering Science and Mechanics
(ESM) Department. We hope that this interest will grow to
other ESM classes and eventually the ESM Department
will support their own JWave courseware server.

4. Acknowledgments

Authors acknowledge the NSF grant "Combined
Research and Curriculum Development: Computer
Simulation of Material Behavior - From Atomistic to the
Continuum Level" (EEC-9700815), and the foundation
grant from SUN Microsystems Inc. and Visual Numerics
Inc. to create the Scientific Modeling and Visualization
Classroom of the ACITC.

5. References

Kriz, R.D., SUN-VNI Wave-Java Server:
http://www.jwave.vt.edu, 1995.

Kriz, R.D., Scientific Visual Data Analysis and
Multimedia: http://www.sv.vt.edu/classes/ESM4714/
ESM4714.html, 1991

Kriz, R.D. and Farkas, D. "Using Materials Resources on
the World Wide Web for Introductory Materials Science
Teaching," J. Materials Education, Vol. 19 No. (1&2),
pp. 111-119, 1997.

Kriz, R.D., Farkas, D., and Batra, R.C., Computer
Simulation of Behavior from the Atomistic to the
Continuum Level: http://www.jwave.vt.edu/crcd/, 1997

Kriz, R.D., Farkas, D., and Batra, R.C., "Integrating
Simulation Research into Curriculum Modules on
Mechanical Behavior for Materials: From the Atomistic
to the Continuum", J. Materials Education, Vol. 21,
No. (1&2), pp. 43-52, 1999.

Ledbetter, H.M. and Kriz, R.D., "Elastic-Wave Surfaces
in Solids," Physica Status Solidi, Vol. 114, pp. 475-
480, 1982.

Parikh, S.D., VRML 1.0 format necessary for viewing in
both the CAVE and VRML Web-based viewer:
http://www.sv.vt.edu/classes/vrml/exercise3.html, 1997

SUN Microsystems Java Beans: http://java.sun.com/beans

Coupleux, F., Visualizer:
http://www.jwave.vt.edu/javaprj/
viscprj/visualizer.html, 1996.

Shaffer, C., Problem Solving Environment:
http://www.cs.vt.edu/~pse, 1999.

